Flipping the Dice:
An active-learning, tech-enhanced, up-to-date 18.05
(Introduction to Probability and Statistics)

Jeremy Orloff and Jonathan Bloom
Mathematics Department, MIT
jorloff@math.mit.edu jbloom@math.mit.edu

Support from the Davis Foundation
and PI/visionary Haynes Miller

April 7, 2014
Overview

1. What we inherited
2. What we’ve created
3. What we’ve learned
What we inherited

18.05: Introduction to probability and statistics.
 - Traditional lecture class for non-math majors
 - Dwindling enrollment

An interest in new approaches.
 - Active learning (Haynes Miller)
 - Online learning (everyone)
Transition

- New curriculum (not the focus of this talk)
- New pedagogy
- New classroom
- New technology
Active learning, flipped classroom

- Meet 3 x 80min in TEAL room
- 60 students, 2 teachers, 3 assistants
- Reading / reading questions on MITx
- Minimal lecturing
- Group problem solving at boards
- Whole class and table discussions
- Clicker questions
- Computer-based studio using R
- Traditional psets and pset checker
Bayesian dice
Active learning versus traditional lecture

- Standing up is beneficial
- Physical space is critical
- Peer and teacher instruction
- Student self-assessment
- Teacher formative assessment
Technology and flipped classroom

- Reading questions
- Clickers and attendance
- Pset checker
Common questions

How much work was all this?
- A tremendous amount because we changed so many things at once.

How much are you able to cover?
- More material with greater understanding.
Other observations

- Active learning is more fun
- Co-teaching is more fun
- Students like getting to know their teachers
- Students like targeted reading more than lecture video
- Students love the pset checker
Looking forward

- Ongoing study by Glenda Stump of the MIT Teaching and Learning Laboratory
- OpenCourseWare and OCW Educator this summer
- Transition to standard staffing and the next teacher
Thank you

Come visit!

TRF 1pm, Stata 32-082
Course Arc

- **Probability:**
 (uncertain world, perfect knowledge of the uncertainty)
 - Basics of probability: counting, independence, conditional probability

- **Statistics I:** pure applied probability:
 (data in an uncertain world, perfect knowledge of the uncertainty)
 - Bayesian inference with known priors

- **Statistics II:** applied probability:
 (data in an uncertain world, imperfect knowledge of the uncertainty)
 - Bayesian inference with unknown priors
 - Frequentist confidence intervals and significance tests
 - Resampling methods: bootstrapping
 - Discussion of scientific papers

- Computation, simulation and visualization using R and applets.