

Providing practical solutions to bring benchtop and bedside to desktop

The Great Diseases Partnership:

bringing cutting-edge biomedical science to the high school biology classroom

Karina Meiri and Berri Jacque

Massachusetts' STEM gap

Massachusetts' biomedical STEM gap

9 out of 10 jobs in health and biology are in health

Three distinct cohorts:

High level (PhD) need more <u>diversity</u>

Mid-level – need more <u>participants</u>

General population – needs better <u>health literacy</u>

Narrowing the STEM gap

Engagement

Preparation

Engagement: How students value STEM

PERCENTAGE OF US STUDENTS AGREEING OR STRONGLY AGREEING:			
I find science helps me understand things around me	80%		
Science is very relevant to me	66%		

How students value learning about things that affect them

PERCENTAGE OF BOSTON HIGH SCHOOL STUDENTS* AGREEING OR STRONGLY AGREEING:				
The importance of studying something that can affect your day-to-day behavior	100%			
The value of studying something that can affect you directly	92%			

*n = 124

Students especially value learning about health and disease

PERCENTAGE OF BOSTON HIGH SCHOOL STUDENTS* AGREEING OR STRONG AGREEING:	LY
The importance of studying something that can affect your day-to-day behavior	100%
The value of studying something that can affect you directly	92%
The value of studying diseases in general	98%

Narrowing the STEM gap

Engagement

Preparation

Preparation: Need practice to achieve advanced benchmarks

PERCENTAGE OF STUDENTS SCORING AT OR ABOVE EACH BENCHMARK IN SCIENCE						
EducationAverageLowIntermediateHighAdvanced*system(>400)(>475)(>550)(>625)						
Singapore	590	96%	87%	69%	40%	
Massachusetts	567	96%	87%	61%	24%	
US	522	93%	73%	39%	9%	
Ghana	396	22%	6%	1%	0%	

*Advanced: Students apply knowledge and understanding of scientific processes and relationships and show some knowledge of scientific inquiry.

Preparation: need practice to solve problems in context

Bao, L. Learning and Scientific Reasoning. Science, 2009. 323(5914): p. 586-587.

Solution?

Can we leverage student interest in health and disease to provide preparation that fosters

Workforce participation and Health literacy?

How?

- Cohort 1 High achievers who aren't self-selecting.
- Cohort 2 Midlevel participants who need exposure.
- Cohort 3 General population, need health literacy.

To reach the largest population - need classroom-based intervention.

Center for Translational Science Education

Search				G0 >
• this site	0	tufts.edu	0	people

Providing practical solutions to bring benchtop and bedside to desktop

Home About Us Projects News Contact Us

A collaborative approach to real-world science in the classroom

CTSE bridges the divide between biomedical scientists and K-12 educators, to bring the up-to-date science behind health and disease into the high school classroom.

The Center for Translational Science Education (CTSE) bridges the divide between biomedical scientists and K-12 educators, to bring the up-to-date science behind health and disease into the high school classroom. By building partnerships among specialists in biomedical science and health, teachers and educational researchers, we design, support implementation of, and rigorously evaluate life-relevant curricula, engaging students in authentic science practice, promoting self-efficacy in scientific problem solving, and impacting health literacy. Our partnerships among academic and industry researchers and teachers design and implement authentic research-based activities that promote the skill sets required for the diverse careers in biomedical and health sciences needed by 21st century economies.

News

Read <u>our latest paper</u> in Academic Medicine.

July 19th-23rd: <u>Graduate</u> <u>Course 'Teaching Infectious</u> <u>Diseases'</u>

Sponsors

CUBIST

Providing practical solutions to bring benchtop and bedside to desktop

The Great Diseases Project

- Designs engaging, rigorous, real world, health-focused biology curricula for 10th – 12th grade students
- Provides extensive support for teachers

Providing practical solutions to bring benchtop and bedside to desktop

The Great Diseases Partnership

A collaborative learning community

Curriculum development by partnership

Teachers Pedagogical content knowledge Assessments

Scientists

Novel content knowledge Evidence-based reasoning

Life-relevant curricula

I. Engage the Boston Public Schools

2. Curriculum development by partnership

July 2009	July 2010		July 2011	July 2012	
Content	Curriculum	Finalize	Enact	Disseminate	
Teacher text Seminar series	Objectives Unit structures Lessons Enactment (1)	Lesson plans Assessments Evaluations	Revise Differentiate Student workbooks Enactments (2-4)	Educative materials Summer PD Mentors for pilots	
Tufts content specialists	Tufts content specialists Teachers	Tufts content specialists Teachers	Teachers		

3. Module development and dissemination

The Great Diseases Curriculum

An inquiry-based modular biology II curriculum for $10^{th} - 12^{th}$ graders

- Infectious diseases (2012)
- Neurological disorders (2013)

Metabolic diseases (2014)

Cancer (2015)

Module I: Infectious Disease 35 comprehensive lessons

Unit 1: Why should we care about infectious disease?

Unit 2: What does it mean to have an infectious disease?

Unit 3: When does a microbe become pathogenic?

Unit 4: How do pathogens make us sick?

Unit 5: How do we get better?

Overall lesson format:

 Using your Ohoot Map homework as a guide, what would you expect to observe if a disease is contagious?

Ask the students:

What are the four problems that must be solved?

- We need to prove that the disease can spread from person to person.
- We need to be able to associate the disease outbreak with a source of infection.
- We need to isolate an infectious agent that is found at both the source of the infection and in the infected person.
- We need to show that the infectious agent we have isolated can cause disease.

In the Phenolphthalein simulation the students use correlations to pinpoint the source of spread of the indicator chemical.

	Activity	
	 Using phenolal/thalein to simulate infectious spread. 	
L,		

After the activity analogize the spread of the indicator solution to disease and guide the students to think about how population characteristics affect the spread.

Ask the students:

How would increases in the human population affect diseases spread by contact?

- Increased population density will force more people into contact with each other.
- Increased population density may force more people to expand into new habitats where they will encounter novel infections.

^{3.} Wrap Up

Important points:

If you are running behind, this slide and the rest can be moved to the next lesson.

- Returning to the idea of correlation and causation. In the activity it was clear that the appearance of color in one cup was caused by adding liquid from another cup. This is causation.
- In reality causation is not so evident because we usually can't see the transfer of infectious agents.

Multiple inquiry-based pedagogies

Lessons:

- Socratic discussions
- Student-led teach-backs (jigsaws)
- Small group work
- Projects

Labs:

- Hands-on
- Interrupted case studies

The biomedical <u>teaching</u> gap

- Teachers also have limited biomedical and health literacy
- Addressing the problem:

Modeling for Fidelity (MFF)

Professional development

Best practices

Actual practices

- Extended duration
- Contextualized rich in content
- Sustained mentor interactions

- Limited duration
- Focus on pedagogy
- Limited mentor interactions

Professional development in-person and online

How do we measure the quality of MFF?

- <u>Direct</u> change in teacher practices in the classroom
 - Teacher self-reporting
 - Observation
- <u>Indirect</u> student outcomes
 - Performance
 - Engagement

How do we measure the quality of MFF?

- <u>Direct</u> change in teacher practices in the classroom
 - Teacher self-reporting
 - Observation
- <u>Indirect</u> student outcomes
 - Performance
 - Engagement

What we measure:

- Student engagement
 - Attitude
- Student Performance
 - Conceptual content knowledge inventory
 - Problem solving skills
- Health literacy
 - Self-efficacy
 - Claims evaluation and risk assessment skills

Student engagement

What is the first word that comes to mind about the Infectious Disease module?

*Data from 3 schools

Conceptual content knowledge and problem solving skills

Conceptual content knowledge and problem solving skills

ID content knowledge and problem solving skills by school

Gold Standard PD

Urban Exam (MA) 100-% of total points 80-60**-**40-20-0 -20 Pre Post Urban General (MA) 100 % of total points 80-60-40-20-0--20 Pre Post

Modeling for Fidelity

***p<0.0001

Berri Jacque

ND content knowledge and problem solving skills by school

Gold Standard PD

Modeling for Fidelity

***p<0.0001

Knowledge and problem solving: Gold standard vs MFF PD

School	Pre		Post		
Infectious Diseases	Mean:	(SD)	Mean:	(SD)	Cohen's d
Urban Exam High School	22.9	11.7	56.2	12.7	2.7
Suburban High School A	15.7	10.2	54.9	14.9	3.1
Urban High School	5.8	7.9	30.4	16.1	1.9
Regional STEM High School	14.3	10.4	46.2	19.9	2.0
Total	18.9	12.6	48.0	19.7	1.8
Neurological Disorders					
Urban Exam High School	19.1	7.5	65.3	13.0	4.4
Suburban High School B	21.4	9.6	51.3	17.6	2.1
Urban High School	11.3	7.6	37.4	14.0	2.3
Regional STEM High School	18.9	9.6	60.1	12.0	3.8
Total	18.6	8.3	60.0	16.3	3.2

Self-efficacy

Module	Average	Average	Effect	Chronbach
	Pre (SD)	Post (SD)	Cohen's d	Alpha
ID (n = 293)	23.0 (8.9)	41.0 (8.0)***	2.12	0.90
ND (n = 269)	17.0 (7.1)	37.7 (8.7)***	2.61	0.93
MD (n = 125)	21.0 (8.3)	40.7 (7.2)***	2.55	0.90
Comparison (n = 124)	23.1 (8.1)			0.90

***p<0.0001

Self-efficacy

Module	Average	Average	Effect	Chronbach
	Pre (SD)	Post (SD)	Cohen's d	Alpha
ID (n = 293)	23.0 (8.9)	41.0 (8.0)***	2.12	0.90
ND (n = 269)	17.0 (7.1)	37.7 (8.7)***	2.61	0.93
MD (n = 125)	21.0 (8.3)	40.7 (7.2)***	2.55	0.90
Comparison (n = 124)	23.1 (8.1)			0.90

***p<0.0001

Self-efficacy instrument

	Before	After	Comparison
	Mean	Mean	Mean
My understanding of how infectious diseases begin My understanding of how infectious diseases spread	2.38 (1.1) 2.89 (1.2)	4.75 (1.1) *** 4.97*** (1.0)	2.39 (1.2) 3.25 (1.3)
My skills at identifying an infectious disease	2.11 (1.1)	(1.0) 4.35*** (1.0)	2.20 (!.0)
My skills at making accurate judgments about infectious diseases	2.15	4.23***	2.26
	(1.0)	(1.1)	(1.1)
My skills at how to find correct information about	2.57	4.53***	2.93
infectious disease	(1.3)	(1.1)	(1.4)
My understanding of how to connect different data to form an hypothesis about an infectious disease	3.32	4.27***	2.46
	(1.1)	(1.1)	(1.3)
My skills at using data to understand infectious disease	2.32	4.20***	2.44
	(1.2)	(1.1)	(1.3)
My knowledge of how the body works to prevent the	2.65	4.83***	2.73
spread of infectious disease	(1.2)	(1.1)	(1.2)
My knowledge of how the environment affects the spread of infectious disease	2.53	4.65***	2.70
	(1.2)	(1.0)	(1.3)
Total (54 points)	21.78	40.54***	22.8
	(8.31)	(8.2)	(9.0)

Principal components analysis (PCA)

	One Year Ago		Currently	
	1	2	1	2
My understanding of how infectious diseases begin		0.74	0.88	
My understanding of how infectious diseases spread		0.76	0.84	
My skills at identifying an infectious disease		0.86	0.83	
My skills at making accurate judgments about infectious				
diseases		0.77	0.82	
My skills at how to find correct information about infectious				
diseases		0.72	0.82	
My understanding of how to connect different data to form an				
hypothesis about an infectious disease		0.79	0.85	
My skills at using data to understand infectious diseases		0.80	0.86	
My knowledge of how the body works to prevent the spread of				
infectious disease		0.74	0.87	
My knowledge of how the environment affects the spread of				
infectious disease		0.74	0.80	

Reliability Statistics	
Lambda	0.97
Cronbach's Alpha	0.91

Self-Efficacy: Gold standard vs MFF

School	Pre		Post		
Infectious Diseases	Mean:	(SD)	Mean:	(SD)	Cohen's d
Urban Exam High School	22.1	8.4	41.2	7.6	2.4
Suburban High School A	24.4	8.8	40.2	7.6	1.9
Urban High School	18.8	6.7	41.5	8.2	3.0
Regional STEM High School	21.2	8.9	39.9	6.7	2.4
Total	21.8	8.3	40.5	8.2	2.3
Neurological Disorders					
Urban Exam High School	17.3	7.0	37.8	8.7	2.6
Suburban High School B	16.8	8.0	36.1	8.0	2.4
Urban High School	19.2	9.1	42.7	9.6	2.5
Regional STEM High School	16.9	7.7	33.3	11.6	1.7
Total	17.0	7.1	37.7	8.7	2.2

Does the health knowledge leave the classroom?

The next step is scaling up

The Great Diseases partners

CTSE

Karina Meiri PhD Berri Jacque PhD Dessy Raytcheva PhD Katherine Malanson PhD Ravi Subramanian PhD Nicholas Sylvain PhD Stephanie Tammen PhD Anne Vera Cruz MA Jenna Reece BS Jane Newbold

Teachers

Kathleen Bateman Med

Bob Akeson MEd Rob Andersen BSc Amanda Cail MEd Chris Doss MEd Matt Dugan MEd Brandon Finegold MEd Aimee Gauthier MEd Mike Galego MEd Eugene Roundtree MEd Lawrence Spezzano MSc, MEd Valerie Pastorelle MEd

Scientists

Ann Bishop PhD Anne Bothmer PhD Lena Dahlberg PhD Carlotta Dao PhD **Aisling Dugan PhD** Jared Hawkins PhD Blanche Ip EmilyKate McDonough Annette McGehee PhD Vaibav Pai PhD Lara Park PhD Sarah Phillips PhD Maja Sedic PhD Sapna Sharma MS Linc Sonenshein PhD Michele Tangredi PhD Amy Thurber Laura Wong PhD

Questions and thoughts?

http://sites.tufts.edu/greatdiseases/

User name: iduser

Password: id?sick

Providing practical solutions to bring benchtop and bedside to desktop