Patterns of Behavior in Online Homework

Colin Fredericks

The Point

- Everyone assigns homework.
- Very few studies done on...
 - How students do homework,
 - How they do it **best**, and
 - > The specific *benefits* of doing it a particular way.
- How much can we learn from homework data?

The Other Point: Analysis

- Part of Researching the Role of Analysis
- Analysis of problems is a powerful tool
 - Enhances physical intuition
 - Speeds solution
- Does specifically practicing analysis help, or does it only come with time?¹

1) E. Kim and S-J Pak, Students do not overcome conceptual difficulties after solving 1000 traditional problems, Am. J. Phys. 70 (7), July 2002

Data Sources

- Electronic homework at UMass Amherst
- Performance data such as exams and final course grades
- Surveys

- Physics 151, Fall 2003
 - > 250 students
 - Eng/Chem/CS
 - I 40,000 rows of data
- Physics 181, Fall 2005
 - 55 students
 - Physics/Astro
 - 8,500 rows of data

Methods and Tools

- Excel and Igor
- Correlation Factors
- Principal Component Analysis

Correlation Factors

- Shows degree of linear relationship between two variables
- r² estimates amount of variance accounted for by a particular variable

$$r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N}\right)\left(\sum Y^2 - \frac{(\sum Y)^2}{N}\right)}}$$

What is PCA?

- Part multilinear modeling, part data reduction scheme
- Returns orthogonal vectors that are linear combinations of the original data
- Used in wide variety of fields: chemistry, social science, marketing

- Can be used to group items
- Can be used to identify random data, sort of

Image from https://en.wikipedia.org/wiki/File:GaussianScatterPCA.png

Terminology

What Data Was Captured?

- OWL ID
- Module #
- ▶ IU #
- Question #
- Session #
- Attempt #
- Score

- Answer Date
- Answer Time
- Seconds to Respond
- UMass ID
- Question Type
- Due Date
- Due Time

Preprocessing

- Students with "Incomplete" grade removed
- Course split into engaged vs. disengaged
 - Engaged students attempted 85% of...
 - Homework assignments,
 - Lecture prep assignments,
 - PRS problems,
 - Course feedback surveys, and
 - Quizzes.
 - Attended all exams.
- Trial run indicated viability of study
- Each homework problem categorized

Problem Types

- Analysis
- Conceptual
- Multiple-Choice / Definition
- Traditional
- Problems were categorized by myself and Dr. Leonard

Gauges

- Calculated from raw data
- One specific measurement of student activity
 - Narrowly defined
 - Some seem like duplicates at first
- Usually a count or average

Literal names:

Seconds to Respond	Number of Attempts
Time Before Due	Start Time
Elapsed Time	Short Wrong
Late Problems	Credit per Attempt

What We Did With Gauges

- Verify validity of problem types
- Correlations with performance
 - Find predictors
 - Understand relations between problem types
 - Compare courses
- Correlations with each other
- Principal Component Analysis
- Combine to form Behaviors

Problem Type Separation

- Gauges along bottom, arbitrary scale on left
- Error bars are twice standard error
- Excellent separation in many cases.

Gauges as Predictors

- Strong predictors:
 - Performance-based gauges (but not all)
 - Time-related gauges (but not all)
 - Attempt-related gauges (just about all)
- Courses often differed in gauge correlations.
- Behaviors make better predictors.

Start Time vs Final Grade

Final Grade

Final Grade

Final Grade

Gauge Cross-Correlation

- Groups created seem to be more functional than meaningful
- Not as powerful as PCA no new factors, increased possibility of erroneous correlation

	STR	N	Latt	Lprob	qchar	sw1	sw	highA	sessi	break	1st	FC	Fscore	aban	AvgSo	elaps	start	TBD
STR	1	-0.4	-0.4	-0.4	-0.3	-0.5	-0.5	-0.3	-0.1	-0	0.1	0.14	0.21	-0.1	0.3	0.03	0.07	0.08
N	-0.4	1	0.77	0.68	0.7	0.71	0.68	0.7	0.51	0.39	0.37	0.35	0.14	-0.1	-0.4	0.1	-0	-0
Latt	-0.4	0.77	1	0.94	0.71	0.74	0.71	0.61	0.46	0.21	0.29	0.33	0.17	-0.1	-0.2	-0	-0.2	-0.2
Lprob	-0.4	0.68	0.94	1	0.73	0.64	0.67	0.54	0.49	0.25	0.31	0.31	0.14	-0.1	-0.2	0	-0.2	-0.2
qchange	-0.3	0.7	0.71	0.73	1	0.53	0.54	0.39	0.68	0.36	0.68	0.47	0.03	0.16	-0.3	0.16	-0	-0
sw1	-0.5	0.71	0.74	0.64	0.53	1	0.94	0.6	0.34	0.11	0.17	0.15	0.04	-0	-0.4	0	-0.1	-0.2
SW	-0.5	0.68	0.71	0.67	0.54	0.94	1	0.55	0.4	0.16	0.18	0.21	0.11	-0.1	-0.3	0.08	-0.1	-0.1
highAtt	-0.3	0.7	0.61	0.54	0.39	0.6	0.55	1	0.2	0.15	0.08	0.1	0.04	-0.1	-0.4	-0.1	-0.2	-0.2
sessions	-0.1	0.51	0.46	0.49	0.68	0.34	0.4	0.2	1	0.82	0.65	0.61	0.27	-0.1	0.05	0.28	0.27	0.22
break	-0	0.39	0.21	0.25	0.36	0.11	0.16	0.15	0.82	1	0.43	0.46	0.25	-0.2	0.05	0.31	0.33	0.27
1st	0.1	0.37	0.29	0.31	0.68	0.17	0.18	0.08	0.65	0.43	1	0.82	0.27	0.01	0.03	0.11	0.2	0.19
FC	0.14	0.35	0.33	0.31	0.47	0.15	0.21	0.1	0.61	0.46	0.82	1	0.74	-0.6	0.41	0.21	0.28	0.23
Fscore	0.21	0.14	0.17	0.14	0.03	0.04	0.11	0.04	0.27	0.25	0.27	0.74	1	-0.9	0.72	0.25	0.25	0.2
abandon	-0.1	-0.1	-0.1	-0.1	0.16	-0	-0.1	-0.1	-0.1	-0.2	0.01	-0.6	-0.9	1	-0.7	-0.2	-0.2	-0.1
AvgScore	0.3	-0.4	-0.2	-0.2	-0.3	-0.4	-0.3	-0.4	0.05	0.05	0.03	0.41	0.72	-0.7	1	0.1	0.22	0.21
elapsed	0.03	0.1	-0	0	0.16	0	0.08	-0.1	0.28	0.31	0.11	0.21	0.25	-0.2	0.1	1	0.69	0.67
start	0.07	-0	-0.2	-0.2	-0	-0.1	-0.1	-0.2	0.27	0.33	0.2	0.28	0.25	-0.2	0.22	0.69	1	0.98
TBD	0.08	-0	-0.2	-0.2	-0	-0.2	-0.1	-0.2	0.22	0.27	0.19	0.23	0.2	-0.1	0.21	0.67	0.98	1

PCA on Gauges

- Factors often differ between problem types
- Individual factors, esp. first ones, are often bad predictors. Good pred. come from many factors.
- Combos below: r=.4 for exams, r=.75 for course

Behaviors

- Linear combinations of Gauges
- Created through intuition and examination
- No "splitting hairs"
- Broader than Gauges
- Evocatively named

Sample Behaviors

Uncertainty
 STR +1
 Attempts +1
 sw +1
 Qchange +1
 Sessions +1

Breaks +1

More?

Tenacity
 FC +2
 Fscore -1
 Problems +1
 Abandon -1

Efficiency

Attempts -l swl -.5 sw -.5

AvgScore +I

Get On With It.

Other Behaviors

Inactivity		Frustratio	n	Slow &			
Attempts	-1	Attempts	+	STR			
SW	+	SW	+	Attem			
sw	+	Qchange	+	Elapse			
Start Time	-1	Sessions	+	HighA			
TBD	-1	Abandon	+	FC			
Abandon	+						

- Slow & Steady STR +1 Attempts +1 Elapsed +1 HighAtt +1
 - FC +1

Grade-Conscious

D

Latt	+	Fscore	+
LProb	+	Problems	+

Tenacity & Efficiency

- Best predictor found
- Also easiest to explain! No fancy statistics, better for interpretation than PCA.

"r" values	т	E	T+E
PI5I Exams	.32	.48	.49
PI5I Course	.76	.32	.80
P181 Exams	.60	.48	.71
PI8I Course	.81	.37	.83

Behavior and Grade, Physics 181 and 151

The Original Point: Analysis

- I81's Final Exam Question #3
 - A "How would you solve this problem?" question.
 - Frustration, inactivity, efficiency have no significant impact. Uncertainty is weak positive
 - Grade-conscious, tenacious, slow & steady are best
- "Fruitful Struggle" seems most effective
- Attempting many problems is as useful as getting high scores or starting early.
- Attempting analysis questions more worthwhile, despite higher number of traditional questions

Interesting 151 Survey Items

- Our time-related gauges do not match students' reporting of time spent
 - Disengaged students often
 wanted to understand
 material; engaged prefer to
 improve existing
 knowledge
- Engaged students more likely to seek multiple resources when stuck
- Disengaged students more likely to give up or "keep trying"

Limitations of Methods & Data

- Behaviorist Bias
- Linear Modeling
- Noise, noise, noise
- Interpretation of higher-order constructs

Wrap-up

Other approaches appearing in colleges

- Degree Compass (predicts passing)
- Course Signals (Nth Week Flag)
- Augmenting grading?
- Data from 8.011 / MITx?
 - Generalize to other disciplines?
 - Other gauges?
 - Longitudinal studies?

Acknowledgements

- William Gerace
- My Thesis Committee
- Ian Beatty
- Emma White

Future Work

relate.mit.edu

DontStopLearning.wordpress.com

Other Approaches and Methods (1)

- Behrouz Minaei-Bidgoli (2004, thesis, MSU)
 - Cluster analysis, genetic algorithms, pattern recognition, etc.
 - Optimized results account for ~90% of final grade
- Warnakulasooriya & Pritchard (2005, MIT)
 - Using gauges to classify problems by difficulty
- Kotas & Finck (2002, MSU)
 - Homework collaboration between students well-correlated with final grade
 - Surveys, log data, and institutional data

Other Approaches and Methods (2)

- Kortemeyer (2004, MSU)
 - "Effective Feedback to the Instructor from Online Homework"
- Cole and Todd (2003)
 - No significant difference between the performance of students using written or online homework, despite using "multimedia homework with immediate rich feedback."
 - Suspicions of bleed-through between experimental and control sections: students in pen-and-paper sections sometimes used the logins of the students in electronic homework sections in order to receive feedback

Research Younger Than Mine

- Lots more "e-homework works" papers, in various fields, especially finance/business.
- Butler, et. al. (2008, Mt. St. Mary's)
 - "… it was found that the students who received immediate feedback on quizzes had higher quiz and test averages than other students…"
- Kortemeyer (2009, MSU)
 - Gender differences in reported use
- Bennett, et. al. (2007, ???)
 - Data-Mining an Online Homework System