

Education Group Meeting

"Boston Public Schools Pilot: Using Tactile and Visual Models to Teach Cellular Processes"

November 7, 2011

MIT Center for Environmental Health Science Kathy Vandiver PhD, Director Community Outreach and Education Core (COEC) Amanda Gruhl PhD, COEC Coordinator and Edgerton Center Instructor

Boston Public Schools Pilot May 2010 – April 2012

- Teacher professional 1. development sessions
- Create a LEGO DNA 2. Learning Center Set --Design & Assemble & Deliver:
 - **Teacher Guide** •
 - **Student Materials**
 - DNA/ RNA Kits ٠
 - **Protein Kits**
 - tRNA Kits
- 3. **Classroom Support:** Provided by BPS, Ms. Susanne Gill and by MIT Kathy Vandiver for classroom implementation.

Recruitment Flyer "Mastering Molecular Biology With LEGO® Molecules" MASSACHUSETTS SUMMER OF INNOVATION A NASA and MIT PROFESSIONAL DEVELOPMENT COURSE FOR BOSTON PUBLIC SCHOOL TEACHERS Students from Wish you had a better way to J. D. O'Byrant HS fold a LEGO teach about DNA and protein protein at the MIT Museum. synthesis? Help pilot the LEGO Molecules Curriculum in your own classroom! On the ribosom translation is Sign up for this 15 hour PD course at a hands-on MIT this fall. experience as wel We have places for only 20 teachers. Register soon. Who should sign up? Teachers teaching DNA and WHY is NASA sponsoring LEGO DNA sets and Protein synthesis in spring 2011. teacher professional development? When is the PD offered? Sat. October 16th 10:00AM--4:00PM Sat. October 30th 8:30 AM - 3:30PM Teach with the LEGO sets in your teacher PD programs. classroom spring semester 2011 Tuesday May 17th 4:00PM-7:00PM Where? MIT Museum, 265 Massachusetts because of the DNA damage it can cause. Ave., Cambridge, MA (MIT Campus)

- To preview the agenda or to register
- Go to

http://www.mylearningplan.com

This workshop will be brought to you by MIT, a partner in the NASA grant "Massachusetts Summer of Innovation." Besides offering science summer camps for students, this funding supports

This course will include basic concepts in protein synthesis with an additional emphasis on DNA damage and repair. Radiation exposure during space travel is of concern to NASA scientists

So come to the workshops! Gain insight into the DNA-damage connection for cancer as well as the biological challenges inherent in space travel. Find new ways to engage and excite your students in science! NASA is counting on your students to come through the STEM pipeline

"Dynamic LEGO models help students learn cellular processes while they complete the steps to building a protein. Their hands do all the work, while their minds are constantly making decisions about what happens next. It's a very active form of learning." Dr. Kathy Vandiver, Outreach Director at MIT and LEGO Life Science inventor

October 2010

MIT Museum Oct 2011

LEGO Protein Synthesis Sets were invented for use in "The Cell" May 2006

MIT Center for Environmental Health Sciences

<u>CEHS Pilot Project 2006 Grant Awarded to</u> <u>the Community Outreach & Education Core</u> (COEC) \$25,000

The MIT Museum and the CEHS Community Outreach and Education Program are collaborating in the development of the first of the Museum's Learning Labs. The purpose of this gallery-based experience is to bring middle and high school classes to the museum to help them understand the process of protein synthesis in the cell through the use of manipulatives.

Schedule for One Year Pilot Project 2006-2007

- 1) Jan-April 06: planning & exhibit construction
- 2) May-June: formative evaluations classes use prototypes
- 3) July- Aug: rework & create final exhibits
- 4) Sept- Nov: exhibit opens with summative evaluations
- 5) Dec 2006: exhibit development completed

ARTHUR VINING DAVIS Foundations Phase One Award 2007-2011 Phase Two Award 2011-2013

Museum Exhibit and Programs were designed to meet the following Learning Goals.

Concepts about DNA Structure

- 1. DNA is a polymer made from subunits called nucleotides.
- 2. Nucleotides can pair with one another. One side of the double strand determines the other. Because of this base pairing, DNA can be copied easily. (AT) (CG)
- 3. DNA separates easily into two strands. They rejoin easily too.
- 4. DNA replicates in a "semi-conservative" manner. (One side will be new. The other side is the original and it is used as the template.)
- 5. DNA forms very long molecules!

- Cell processes are more difficult to teach than cell structures which are static.
- More teaching about protein molecules is needed!

Concepts about DNA Function

- 1. DNA contains a nucleotide code that is copied into the mRNA.
- 2. Nucleotides can be read in groups of 3. Each group codes for a particular amino acid.
- 3. tRNA molecules carry only specific amino acids. In this way, tRNA molecules translate the DNA code.
- 4. On the ribosome, the amino acids are joined into a chain.
- 5. The order of the amino acids in the protein chain is determined by the order of the nucleotides in the DNA.
- 6. The completed amino acid chain will fold into a shape. It is this shape that gives the protein its function

Concepts about DNA Damage & Repair

- 1. DNA can become damaged. Breaks can occur. Extraneous molecules can be come attached to the DNA.
- 2. Some molecules from cigarette smoke, for example, cause harm because they adhere to DNA and then the DNA code can not be read properly.
- 3. DNA has repair molecules that routinely run up and down the length of the molecule fixing breaks and ripping out the mismatched base pairs.
- 4. If a cell cannot repair its DNA, the cell will shut itself down, choosing to die peacefully in a process called apoptosis.
- 5. Cancer cells are cells with damaged DNA that have escaped from the peaceful "shutdown program". Typically the "shut-down program" itself is the portion of the DNA that has become damaged and doesn't work!

Full Day Fieldtrips Boston Public Schools

MIT Museum 9:00-11:30 LEGO & computer

Broad Institute 11:30-2:00 Lunch & wet lab

Feb 2008 Combining Fieldtrips: MIT Museum and Broad Institute

Design & Assemble & Deliver LEGO molecules!

People Making a Difference®

Non- profit corporation , directed by Lori Tsuruda, MIT alum *Jan 2011- March 2011 more than 1000 man hours of effort!*

TASK description: (22 classroom sets- 10 for BPS)

Order 440, 000 LEGO pieces (~ half million LEGO components!)
Estimate work hours to build the DNA, Protein and tRNA kits

• 140 hours per classroom set

•Create the INSTRUCTIONS FOR BUILDING all LEGO molecules

•Organize and recruit volunteers

Host LEGO building events at different sites, on and off campus
Corporate volunteer events during the work day

•MIT 150th celebration community volunteering –Bush Room •Track LEGO production of individual molecules (e.g. Nucleotides)

• Re-associate all LEGO molecules into the correct classroom sets

MIT Grad Students very important! Needed for upper level biochemistry tasks in LEGO

Novartis Community Day

Social Justice Academy, Hyde Park High School – Biology teacher Andrew Rabin

The classroom of the Lead Biology Leader in Boston Public Schools, Johanna Waldman

The classroom of Juliet Parry, Brighton, with 14 (ESL) English as a Second Language Students Seven different languages in one room! The most enjoyable class! I co-taught with Juliet. Next it is your turn to try

Boston Public Schools Pilot May 2010 – April 2012

- 1. <u>Teacher professional</u> <u>development sessions</u>
- 2. <u>Create a LEGO DNA</u> <u>Learning Center Set --</u> <u>Design & Assemble &</u> <u>Deliver:</u>
 - <u>Teacher Guide</u>
 - <u>Student Materials</u>
 - DNA/ RNA Kits
 - Protein Kits
 - <u>tRNA Kits</u>
- <u>Classroom Support:</u> Provided by BPS, Ms. Susanne Gill and by MIT Kathy Vandiver for classroom implementation.

Your LEGO Learning Time....

Thank you!

Community Outreach and Education Core
Education Group Meeting November 7, 2011

Hands-on LEGO[®] DNA:

An Introduction to DNA Structure and Replication

Kathy Vandiver, Ph.D. and Amanda Gruhl, Ph.D. Community Outreach and Engagement Core, Center for Environmental Health Sciences (CEHS), MIT, Cambridge MA 2009 ©MIT and the LEGO Group

Nucleotides

DNA is a molecule made from subunits called <u>nucleotides</u>.

Chemical Structure

LEGO Structure

Introduction to Nucleotides

1. Take 1 of each color nucleotide. Hold a nucleotide in your hand and study the picture to identify the parts (phosphate group, sugar, base).

2. Look at the bases of all nucleotides. Which bases are bigger?

Page 4

 \odot The LDGO Group and MIT. All Rights Reserved.

 Σ The LEGO Group and MLT. All Bights Beserved .

Building DNA

1. DNA contains messages. **Build the bottom strand of DNA: ATG CCC TAG**. Make sure all the arrows point to the right (in the direction you read).

2. DNA is double stranded. Create the top strand of DNA using these rules:

- DNA strands go in opposite directions
- Bigger nucleotides pair with smaller nucleotides
- Top and bottom DNA strands are parallel

Page 6

 \mathfrak{D}^{-} he LEGO Group and MLL. All Rights Reserved.

Which bases pair together? You have just discovered the famous base pairing rule!

Notice the direction of the arrows on each side of the DNA. DNA strands have a direction.

3. Unsnap the DNA by pinching and pulling up on the sides of the DNA ladder. The two DNA strands will snap apart. In a cell, the two DNA strands must separate to create new DNA.

This symbol means pinch the DNA as shown in this photo.

 $\tilde{\omega}$ the I-GO Group and MH. All Rights Reserved.

Chromosomes

A long molecule of DNA is called a <u>chromosome</u>.

Human Chromosomes

Overview of DNA, Genes, and Chromosomes

These three terms are often confusing: DNA, genes, and chromosomes. Let's use the diagram below. The diagram represents a double stranded DNA molecule, which has been untwisted and laid flat. It looks like a ladder.

- <u>DNA</u> is made of two strands, Strand A (top) and Strand B (bottom), as shown here. The strands can be easily separated where they meet in the middle, like the LEGO DNA.
- Note that both strands contain coded messages of DNA nucleotides, called genes.
- The strands are like one-way streets. Molecules reading the codes can only read in one direction.
- DNA is an abbreviation for <u>DeoxyriboNucleic Acid</u>, the chemical name for the molecule. Both genes and <u>chromosomes</u> are made of DNA. Find the words in red below. Review the picture definitions.

This is a very short example. The shortest human chromosome has 17 million base pairs (47 millions steps on the DNA ladder) and is made of hundreds of genes.

DNA Replication

Before a cell splits into two cells, it must make enough DNA for the additional cell.

DNA replication has already occurred in this photograph. Each rod-shaped chromosome is actually two DNA molecules side-by-side (exact copies).

DNA Replication

The process of copying a DNA molecule is called DNA replication. Let's try itl

1. Build this strand of DNA: GCA_TGC_ACA_TTG. (The gaps between every three letters will help you build the sequence correctly.) Add a white marker to the G on the GCA end.

2. Make a complementary DNA strand on top using the base pairing rules. Add a white marker to the second strand. Both strands of the original DNA are now marked so we can follow what happens to them.

3. Now we begin the process of DNA replication! Unsnap your DNA strands from one end, as shown below. In real DNA, weak hydrogen bonds (represented by the LEGO black joint) allow the two DNA strands to separate from each other easily.

Page 11

O THE LCCO Group and MIT. All Rights Reserved.

5. Continue unsnapping the DNA strands and adding nucleotides until you have two complete DNA molecules.

Congratulations! DNA replication is complete.

Look carefully at your two molecules of DNA. Are both molecules identical? Was the copying perfect? Notice the markers on the molecules. Remember you marked the original DNA strands before the copying process began. Where did the original strands end up?

DNA replication is called a *semi-conservative* process. One strand is conserved (or kept) in the copying process. In other words, there is one original strand in each new molecule.

Major DNA Concepts

- DNA is a molecule made from smaller molecules called <u>nucleotides</u>.
- DNA's two sides separate easily and rejoin easily.
- DNA forms long molecules called <u>chromosomes</u>, which are comprised of genes joined end to end.
- <u>Genes</u> are lengths of DNA which code for proteins or RNA products.
- Nucleotides can pair with one another. Because of this base pairing, DNA can be copied easily. One side of the double strand determines the other.
- DNA <u>replication</u> (doubling) occurs in a <u>semi-conservative</u> manner. One side of the DNA is conserved (saved) in this process.

Education Group Meeting, MIT Biology November 7, 2011

Kathy Vandiver, Ph.D. and Amanda Gruhl, Ph.D. Community Outreach and Engagement Core, Center for Environmental Health Sciences (CEHS), MIT, Cambridge MA

Major Concepts for Proteins

Protein structure and function

- Proteins are made from subunits called <u>amino acids</u>.
- The amino acids form long chains that fold up into different working shapes to perform their functions. The order of the amino acids is key.

Proteins and some genetic (Mendelian) terms

- Genes code for proteins. A protein can be the <u>trait</u> on the molecular level.
- Genes coding for non-functional proteins can appear to be <u>recessive traits</u>.
 For example, the cystic fibrosis gene produces a non-functional channel protein. Thus, this gene produces a trait we call recessive.

Protein coding

- The order of the DNA nucleotides determines the order of the the amino acids in the protein.
- Every three nucleotides, a <u>codon</u>, codes a particular amino acid (or indicates a stop signal).
- Changes in the DNA sequence can cause changes in a protein's shape and function.

Where can you find proteins?

Keratin is a protein.

Actin and myosin are proteins.

Look at a Red Blood Cell -- Close up!

Proteins are the worker molecules

Proteins molecules can be found everywhere in the cell-- How we depict them.

Protein Molecules in the Cell

What does this model tell us already about proteins?

What does this model tell us already about proteins?

Proteins

- 1. Are made of subunits (amino acids) joined into chains
- 2. Have flexible chains which can be folded up into different shapes
- 3. Are comprised of four types of amino acids (4 colors) and 20 different ones.

Each person picks up one amino acid. Find the 3 parts of an amino acid.

How to Build LEGO Proteins

Proteins are long chains of amino acids. Let's look at an amino acid! Each teammate should:

- 1. Choose any one amino acid from your LEGO kit.
- 2. Find these 3 parts on your model.

Side chain

An amino acid is a small molecule with different groups of atoms.

- The amino group (NH,) is black.
- The acid group (COOH) is gray.
- Twenty different kinds of amino acids are created by varying side chains.
- · The side chains on amino acids can rotate freely.

Amino Acid Chemistry Reference

Page 32

© The LEGO Group and MIT. All Rights Reserved.

Amino Acid Chemistry Reference

Connecting amino acids is easy

Disconnecting amino acids is easy

Hold the large flat bricks of the side chain.
 Pull.

See how to correctly pull them apart.

Could millions of <u>different</u> proteins be made?

Experiment: Each person should build a chain:

- 1) Connect any 4 amino acids together
- 2) <u>Keep the amino end (black brick end) to the left.</u> This rule helps keep them in order.
- 3) When asked, hold up your protein so everyone can see it.
- 4) How many people made the same protein? Compare #1-2-3-4

Where can you find proteins?

Watch Demo! Instructor eats, then rebuilds muscle from the <u>same</u> amino acids.

Experiment and Discover #2 [Work through the steps to find the answers.]

Can each amino acid's attraction for water or dislike for water, help create the protein's shape? Teammates should work together on this activity:

1. Assemble the 12 amino acid protein chain below. Remember to keep the amino end (black brick end) towards the left. Your team can share the job, if each person builds a section of the chain. Join the sections and check your work.

2. The protein is surrounded by water molecules. Water molecules have an electrical charge that can attract and repel amino acids. Molecules are always in motion, so the amino acid chain can move around to fit in with its surroundings.

3. Some amino acids are hydrophobic (water-fearing). Gently fold the chain so that the hydrophobic (yellow) amino acids are located mostly inside of the protein, away from the water.

Some amino acids are hydrophilic (water-loving). Adjust the chain so that the hydrophilic (red, blue, green) amino acids are located mostly on the outside, facing the water molecules.

Page 13

© The LEGO Group and MIT. All Rights Reserved.

Keep the black ends to the left. Show your instructor your folded chain!

Channel Protein in the Cell

Proteins have many important jobs to do in cells. Some proteins are important because they form cell structures. For example, proteins are needed to make the pores in the cell membrane. These proteins regulate the entry and exit of many molecules. You will build a channel protein and see how its specialized shape helps it fit into the cell membrane.

1. Study the cell membrane below.

Page 25

© The LEGO Group and MIT. All Rights Reserved.

Channel Protein Modeled with LEGO

2. Look for the pore in the center that is formed by 4 protein chains. Find 2 alpha chains and 2 beta chains.

Listen for which chain your team should build. Is it an alpha or beta chain?

Build the Channel Protein

3. Build one of these protein chains as your teacher directs.

Will Met have its amino group or its acid group free?

We will need 2 alpha chains and 2 beta chains (4 chains) to make a channel protein.

© The LEGO Group and MIT. All Rights Reserved.

Fold and Place Protein Chains in the Cell Membrane

4. Fold the channel protein chains into helices and place them on the LEGO membrane mat.

Page 28

The completed protein. Look at the effects of the mutations.

Channel Protein Modeled with LEGO

2. Look for the pore in the center that is formed by 4 protein chains. Find 2 alpha chains and 2 beta chains.

Review Protein Structure for the Computer Activity

- 1) **<u>Primary</u>** structure– the order of the amino acids
- 2) <u>Secondary</u> structure the folding of the chains into helices or a beta pleated sheets. These structures utilize hydrogen bonding.
- 3) <u>Tertiary</u> structure the folding of the chains caused by hydrophobic or hydrophilic principles
- 4) **Quaternary** structure the association of a protein with another protein chain

Major Concepts for Proteins

Protein structure and function

- Proteins are made from subunits called <u>amino acids</u>.
- The amino acids form long chains that fold up into different working shapes to perform their functions. The order of the amino acids is key.

Proteins and some genetic (Mendelian) terms

- Genes code for proteins. A protein can be the <u>trait</u> on the molecular level.
- Genes coding for non-functional proteins can appear to be <u>recessive traits</u>.
 For example, the cystic fibrosis gene produces a non-functional channel protein. Thus, this gene produces a trait we call recessive.

Protein coding

- The order of the DNA nucleotides determines the order of the the amino acids in the protein.
- Every three nucleotides, a <u>codon</u>, codes a particular amino acid (or indicates a stop signal).
- Changes in the DNA sequence can cause changes in a protein's shape and function.

Three nucleotides in a line means a certain amino acid.

Examine the LEGO gene strips for the membrane protein

1. Build the gene from DNA nucleotides exactly in the order shown above. Add a LEGO white marker to the A of the ATG end. Then add the correct base pairs to make the DNA double stranded.

 Θ The LEGO Group and MIT. All Rights Reserved.
Look up the DNA codons on page 16 & 17. Place the cards under the codon

Decoding the Messages in DNA

DNA can be decoded by reading in the direction of the arrows. Each arrow points towards the 3' end of the nucleotide. In the picture, the bottom strand of DNA reads: ATG. What will the top strand read?

Three nucleotides in a row, called a codon, indicate a particular amino acid. For instance, the DNA sequence A T G (shown below) codes for the amino acid, Methionine (Met). Decode your DNA with the following steps:

1. Obtain the pack of cards for your gene (alpha, alpha mutated, beta, or beta mutated).

2. Look up the nucleotides in groups of 3. Use the table on pages 16-17 to find the correct amino acid.

3. Select the correct amino acid card. Slide the amino acid card under the DNA strand as shown in the photo.

4. Continue decoding the DNA nucleotides, in groups of 3, until the end.

Now, look at the order of the amino acids. Imagine they are joined together in a chain. Notice this sequence of amino acids seems familiar. You can now see how the DNA nucleotides can determine the order of the amino acids in a protein.

Amino Acid DNA Code

Lysine	AAA AAG	
Asparagine	AAT AAC	
Isoleucine	ATT ATC ATA	
Methionine	ATG	
Threonine	ACT ACC ACA ACG	
Serine	TCT TCC TCA TCG AGT AGC	
Tyrosine	TAT TAC	
Stop	TAA TAG TGA	
Tryptophan	TGG	
Cysteine	IGT IGC	
	Page 16 © The TEGO Group and K	ALL All Bights Beserved.

Phenylalanine	πι π Ċ
Leucine	CΠ CIC CIA CIG ΠΑ ΠG
Proline	CCT CCC CCA CCG
Glutamine	CAA CAG
Histidine	CAT CAC
Arginine	CGT CGC CGA CGG AGA AGG
Alanine	GCT GCC GCA GCG
Glycine	GGT GGC GGA GGG
Valine	GIT GIC GIA GIG
Glutamic acid	GAA GAG
Aspartic acid	GAT GAC

RNA nucleotides. The sugar is different. But the molecules work the same way.

Photo of the ribosome with mRNA and tRNA molecules and the forming protein.

