Integrating Undergraduates into Educationally Meaningful Research Programs and Courses

> Jeffrey H. Miller University of California, Los Angeles CA

Challenge Involve Students in Research Goals

1. Transmit the excitement of tackling the unknown

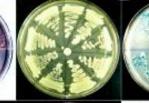
- 2. Have rapid rewards instead of long apprenticeship
- 3. Present an intellectual process

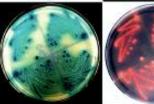
5

- 4. Student has ownership of a project and results, not a "cog in the wheel"
 - Understand the practical importance of the relevant area of research

Requirements

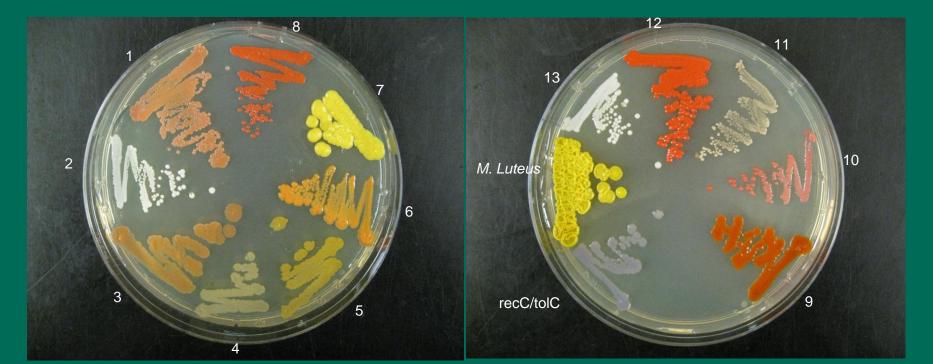
Commitment from mentor

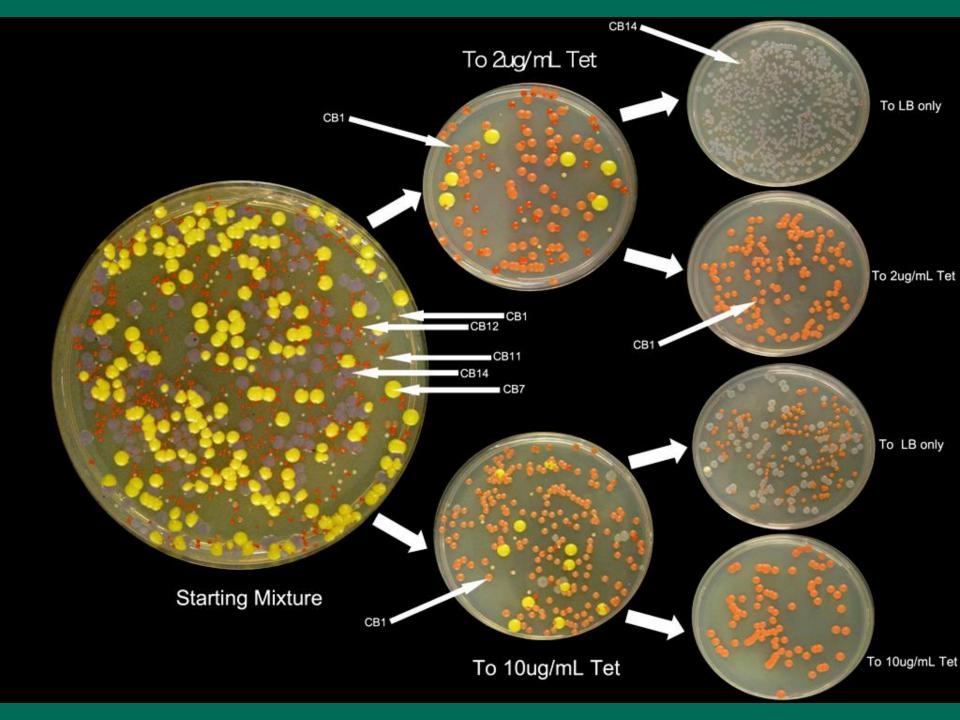

- Commitment from student
- Projects that allow goals to be achieved


Erin R. Sanders-Lorenz and Jeffrey H. Miller

I, Microbiologist

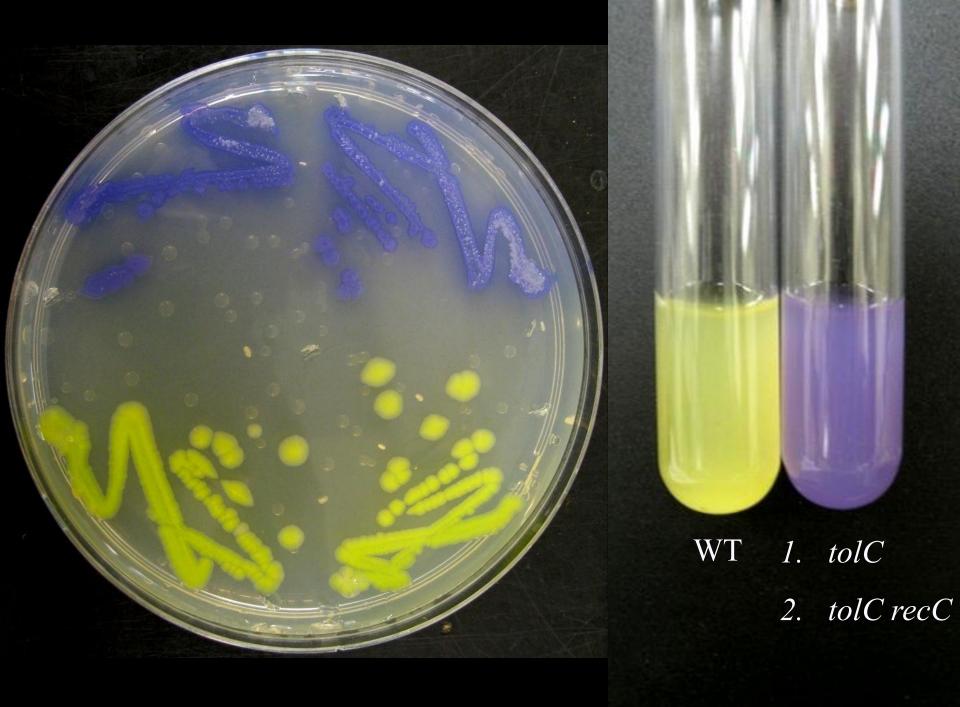


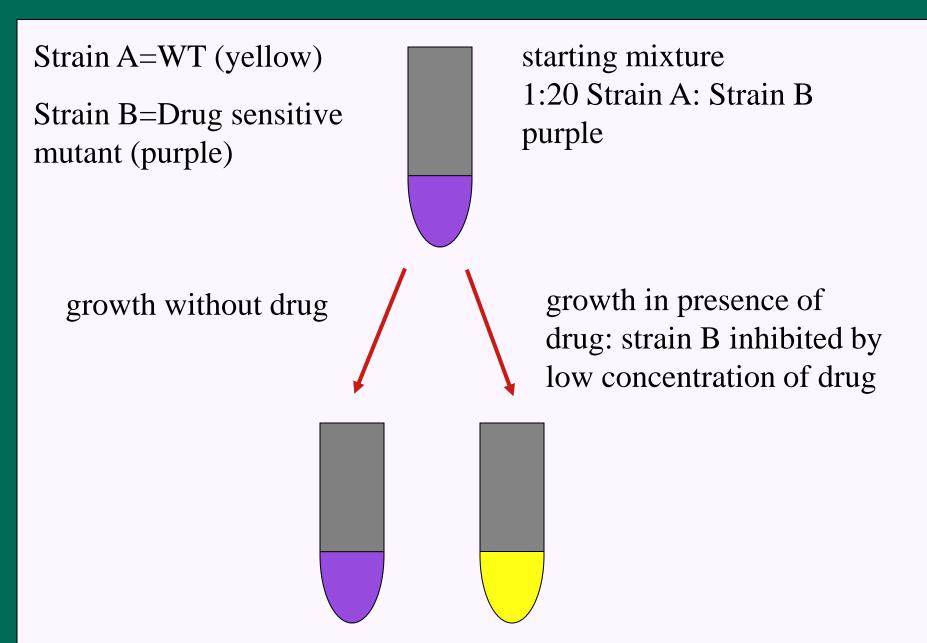




Environmental Samples Collected and Source:

Strain	Species	Color	Source
CB001	<i>E. coli</i> strain	Pinkish red	Lab contaminant
CB002	Staphylococcus strain	White	Amie Fong finger
CB003	Bacillus cereus	Salmon	Soil
CB004	Bacillus cereus	Pale yellow	Soil
CB005	Bacillus cereus	Yellow orange	Soil
CB006	Bacillus cereus	Orange	Soil
CB007	Bacillus cereus	Yellow	Amie Fong finger
CB008	Bacillus cereus	Neon red	Amie Fong hair
CB009	E. fergusonii (potentially)	Bloody red/orange	South campus dumpster
CB010	Bacillus cereus	Baby pink	UCLA campus
CB011	Staphylococcus hominis	Tan	Arrowhead water jug from CHS
CB012	Bacillus cereus	Bright red	Orthopaedic hospital bathroom handle
CB013	Staphylococcus strain	White #2	Orthopaedic hospital bathroom handle

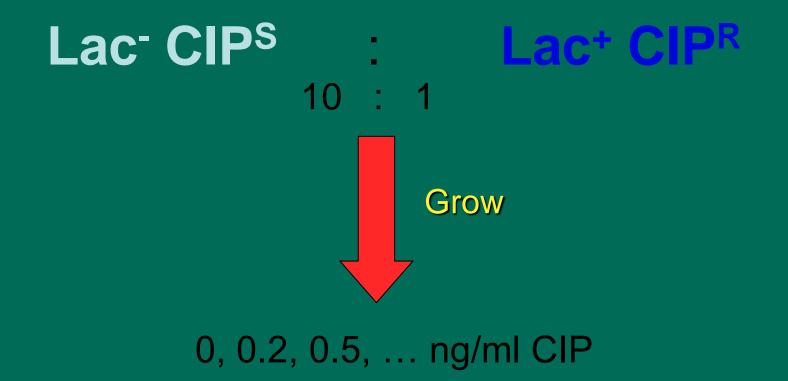

Bacterial Art



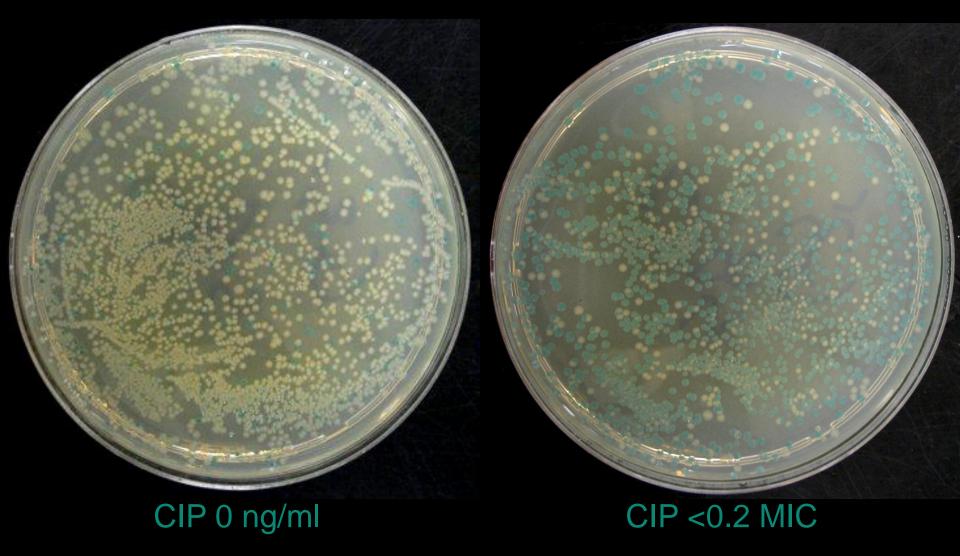

It Takes 1,000 Nanobiologists to Make One Microbiologist

- Sydney Brenner

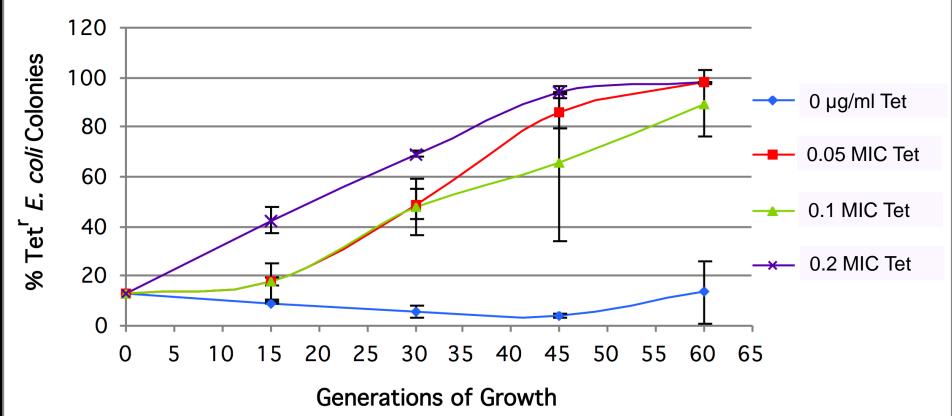
LBCipro .05Cipro .1Cipro .2Cipro .5Cipro 1WT:tolCrecCng/ml


What is the minimum concentration of an antibiotic that is significant?

 Current thought holds that evolution of antibiotic resistance occurs at the MIC and above


- Reservoirs of antibiotic resistance already exist

- What is the minimum concentration that selects for resistance? (MSC)


Competition Experiments

24 Generations

Growth of Tet^r *E.coli*

Brazilian amputee model dead at 20

•STORY HIGHLIGHTS

NEW: Brazilian amputee model Mariana Bridi da Costa died early Saturday
 Da Costa's hands, feet were amputated after she contracted septicemia
 Da Costa placed sixth in the Miss Bikini International competition in China

Family Mourning MRSA Death Of Frankford Teen

PHILADELPHIA (CBS 3) — A local family is speaking out after they say their young son died of the highly contagious infection MRSA.

Reporting Valerie Levesque

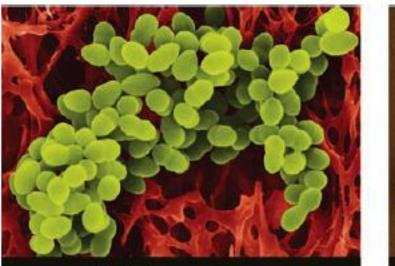
Levesque Michael Literski was a 13-year student at the Ethan Allen Elementary School and a Frankford resident. His family thought he had a bad cold or the flu until he died February 16.

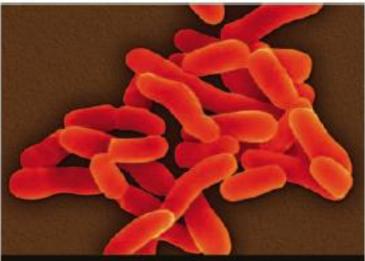
"All of a sudden, he just said 'it's time' and blood just started pouring out of his mouth and he was gone in my arms and my son was doing CPR on him," Michael's grandmother Mary Ann Gwalthney said.

The family told CBS3 that the medical examiner's office did an autopsy.

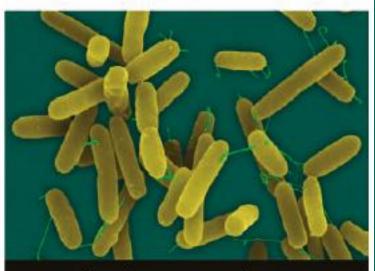
"They took a part of the lung and put it in the machinery and found out it was MRSA," Mary Ann said. "He was a perfectly healthy, normal 13-year-old boy looking to graduate from school, and just wiped out of our arms."

A Frankford family says their son, Michael Literski, died of MRSA. CBS


Related Slideshows

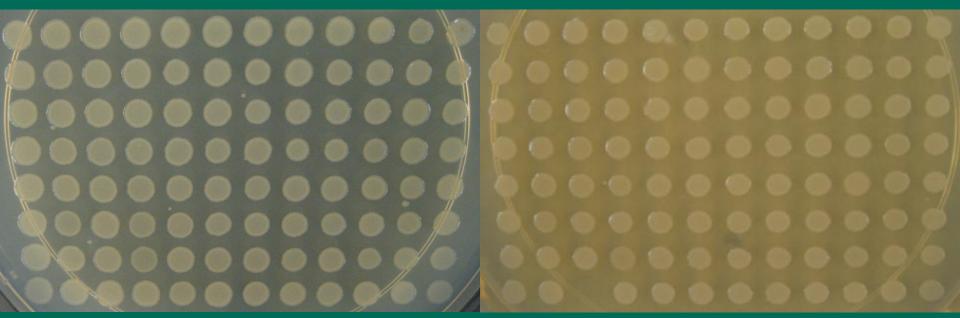

World Welcomes Mardi Gras 2009

Red Carpet Fashions At 81st


Staphylococcus aureus

Mycobacterium tuberculosis

Acinetobacter baumannii

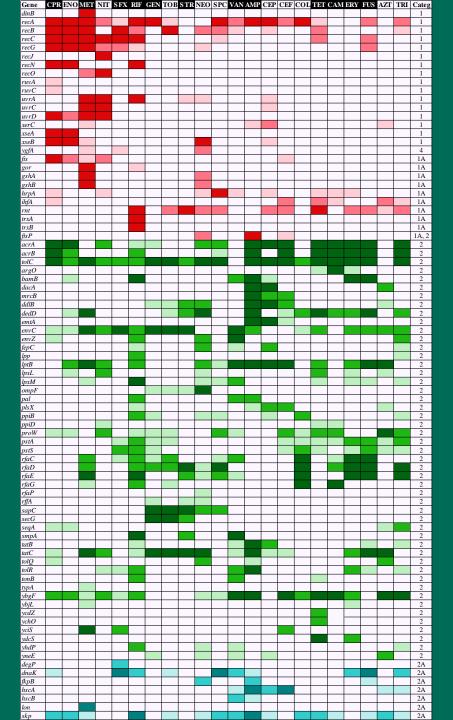

Pseudomonas aeruginosa

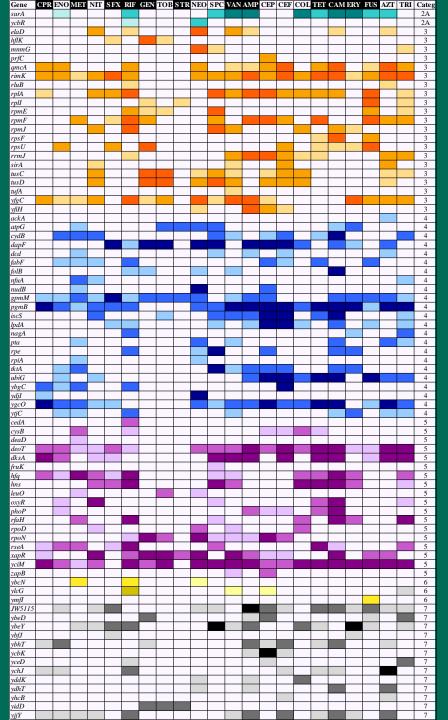
Screen KEIO collection of \sim 4,000 single gene knockout strains in E. coli Antibiotic Find hypersensitive mutants Test counterparts in other bacteria Determine pathways involved (networks) Find small molecule inhibitors of proteins involved Use as co-drugs or potentiators

Ciprofloxacin 0 ng/ml

Ciprofloxacin 7.5 ng/ml

Cipro MIC (ng/ml)


WT	16-20	recA	2
fis	6	fis recA	1
ruvC	8	xseA	6
is ruvC	2	recC	8
tolC	5	xseA recC	1.
fis tolC	0.2	recC tolC	0.


Í

Cipro Resistant Mutant Gyrase A S83L

Background	<u>MIC (ng/ml)</u>
WT	750
recC	500
fis	300
xseA	250
recA	125
tolC	64
tolC recC	20

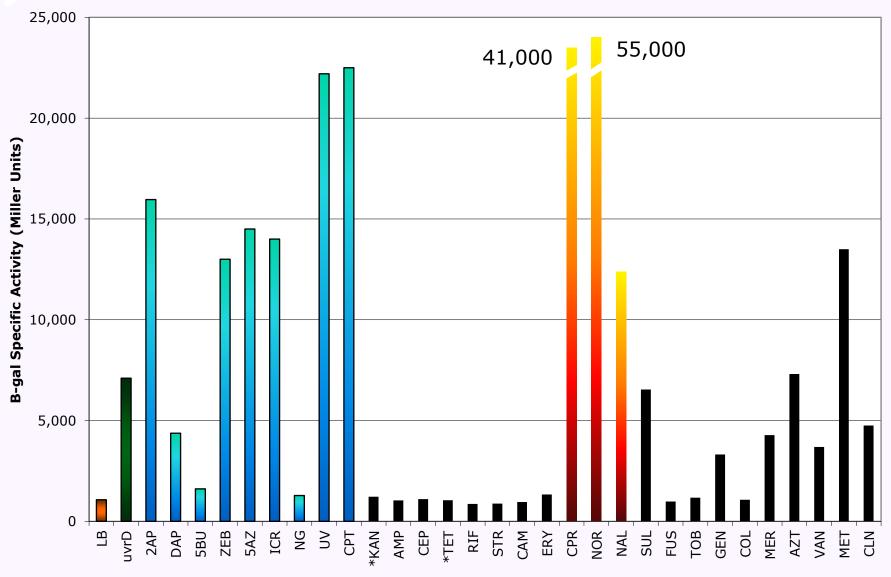
Vancomycin MIC (µg/ml) WT 500 surA 4 smpA 70 surA smpA 1.5

Gene	CIP	ENA	NII	MIK	SFA	KIF	GEN	108	NEO	SIK	SPI	IEI	VAN	AMP	KAD	FUA	AIM	0.51	CHL	EKY	FUS	IKI	
recA																							1
recB																							1
recC																							1
acrA																							2
acrB																							2
tolC																							2
ddlB																							2
envC																							2
lpxL																							2
lpxM																							2
nlpC																							2
proW																							2
pstS																							2
qmcA																							2
rfaC																							2
rfaD																							2
rfaE																							2
rfaG																							2
tatC																							2
tolR																							2
ybgF																							2
ydcS																							2
dnaK																							2A
hlpA																							2A
hscA																							2A
surA																							2A
rimK																							3
rplA																							3
rpmE																							3
rpmJ																							3
rsmF																							3
yheM																							3
yheN																							3
yfgC																							3
rlmE																							3A
atpG																							4
																							4
dapF																							
gmhB																							4
gpmM																							4
iscS																							4
mraW																							4
pgaC																							4
rutA																							4
ycjU																							4
ygcO																							4
dksA																							5
fur																							5
hfq																							5
hns																							5
mfd																							5
																							5
nusB																							
rseA																							5
xapR																							5
yciT																							5
ylcG																							6
ybeD																							7
vbeY																							7
vbhT																							7
ycbW																							7
yciM																							7
yjjY																							7

FIG. 3. Sixty-one strains with sensitivity to eight or more of the twenty-two antibiotics.

Gene	CIP	ENX	NIT	MTR	SFX	RIF	GEN	TOB	NEO	STR	SPT	TET	VAN	AMP	RAD	FOX	ATM	CST	CHL	ERY	FUS	TRI	Categ
DNA-re																							
xseA																							1
xseB																							1
recN recG																							1
fis																							1A
uvrD																							1
ybjQ																							7
recQ																							1
recJ																							1
dinG recF																							1
recO																							1
recR																							1
uvrA																							1
uvrC																							1
dam																							1
gor ashA																							1A 1A
gshA gshB																							1A 1A
dinB		`																					1
Aminog	lycosi	de Se	nstiv	ity																			
sapC																							2
secG																							2
hflK																							3 7
JW5360 ompF																							2
prfC																							3
rffA																							2
yidD																							7
leuO																							5
folB																							4
glnD nudB																							4 4
nuaв yidD																							4
yidD yidP																							5
B-lactar	n Sen	stivit	y																				
emtA																							2
dacA																							2
rsgA																							3
mrcB																							2 7
yfiH ycbK																							7
Other S	pecifi	ic Sen	sitivi	ty			-																
lon				Ĺ																			2A
gntY																							4
deaD																							5
mdtJ																							2
degP cedA																							2A 5
trxA																							2
trxB																							2
rpmG																							3
ydfH																							5
rhlB							_																3
ybcN																							6
<u>ycdZ</u> ppiD																							2
ppiD tufA																							3
pgpB																							3
vacJ																							2
flgF																							2
argO																							2
rplI																							3
dnaJ																							2A
glpD rsmE																							4
ISME																							<u> </u>

Gene	CIP	ENX	NIT	MTR	SFX	RIF
cedA						
trxA						
<i>trxB</i>						
rpmG						
ydfH						
rhlB						
ybcN						


Gene	Rif	Categ	MIC µg/ml	Gene	MTR	Categ	MIC µg/ml
BW2511	3		16	BW2511	3		1000
<i>bamB</i>		2	1.5	gshA		1A	100
yciM		7	1.5				
rfaD		2	3				
rfaE		2	3				
hlpA		2A	3				
surA		2A	3				
rpmF		3	3				
ylcG		6	3				
recA		1	5				
rfaC		2	5				
tolR		2	5				
trxA		2	5				
trxB		2	5				

Applications

- Targets for co-drugs

- Typing of antibiotics

- Identify mutants for antibiotic detection

Agents

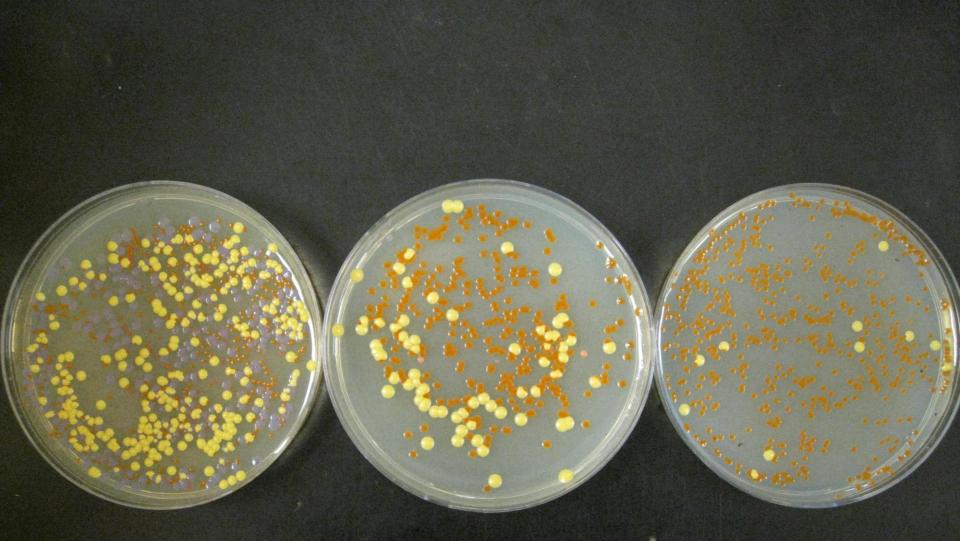

Rif^r Mutagenic Potency							
(ratio to u	(ratio to untreated WT)						
EMS	5800						
5BdU	5100						
UV	400						
2AP	160						
mutS	120						
CPR	1-3						
WT	1						

Table 1. Mutation frequency of heat/acid-treated M13mp2 DNA in normal and SOS-induced cells

UV dose, J/m ²	Lethal hits per DNA molecule	Mutation frequency $(\times 10^{-4})$	Relative mutation frequency
0	0.0	6.2 ± 1.4	1.0
0	3.2	13.6 ± 3.0	2.2
100	0.0	11.8 ± 4.0	1.9
100	3.2	97.8 ± 25.3	15.8

The transfections, using E. coli CSH50 F' lacZ Δ M15, used either undamaged DNA (0.5-2.0 µg) or heat/acid-treated DNA (5.0-20 µg). Values shown are mean ± SD of six independent experiments, all carried out with a single M13mp2 viral DNA preparation. Survival of the UV-irradiated cells was 55 ± 12%.

LBCipro .05Cipro .1Cipro .2Cipro .5Cipro 1WT:tolCrecCng/ml

Starting Mix Day 2 in 15 ng/ml cipro Day 3 in 15 ng/ml cipro

Acknowledgments

Hanjing Yang* **Cindy Tamae Katherine Tran** Emily Wu* Elinne Becket* Ann Bui Frank Chen Laney Chinn Amie Fong* Kevin Frew* Lucia Guisado* **Jeeyoon Hong** Katherine Kim **Catherine Lee**

Kim Lee Anne Liu Maria Maiz* Leah Medrano* Eunice Park Lillian Tran Daniel Sitz Jessica Yuan* Christine Wahba

<u>Bicyclomycin</u>

Max E. Gottesman Robert S. Washburn

> Columbia University Medical Center New York, NY

Bioluminescent Proteins

Robert M. Hoffman

Anticancer, Inc. San Diego, CA

Anya Salih University of Western Sydney New South Wales, Australia

Damage <u>Avoidance</u>

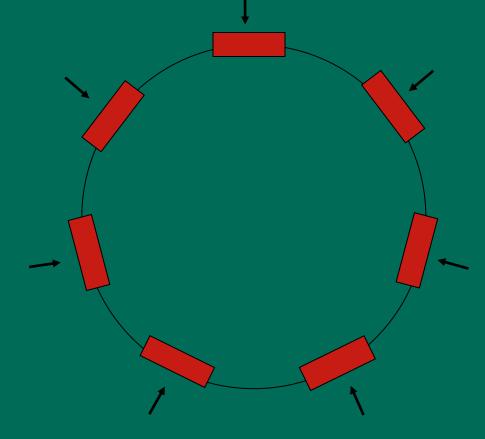
DNA <u>Damage</u>

DNA <u>Replication</u>

Post <u>Replication</u>

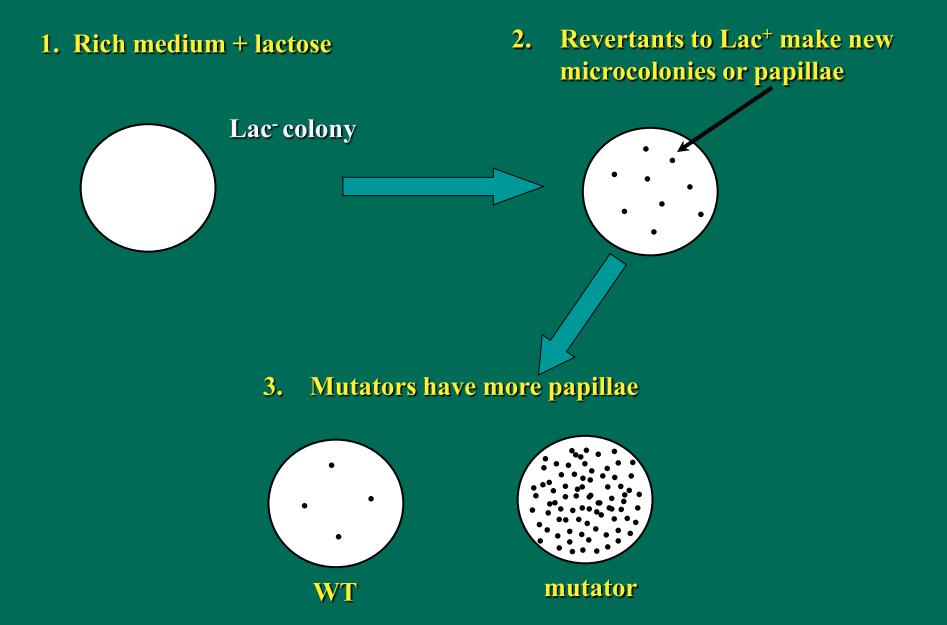
Detoxification

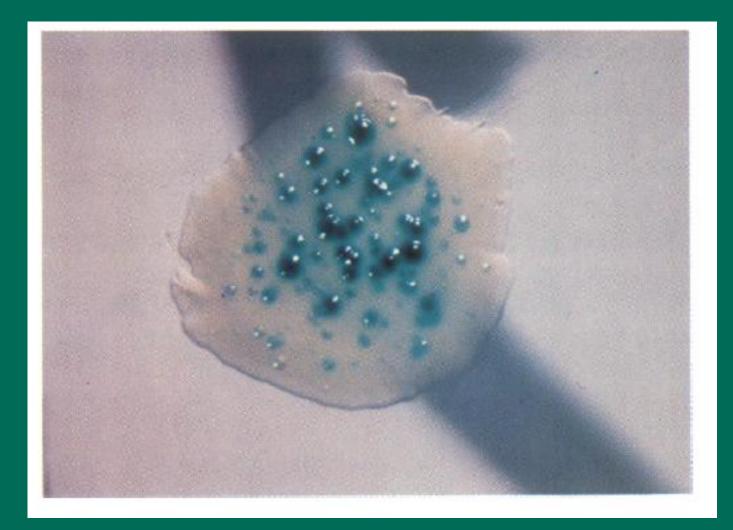
- Direct Reversal
 Excision Repair
 Oxidative
 Damage Repair
 Glycosylases
- Pool size
 Polymerases
 Proofreading
 Induction of error-prone polymerases
- Mismatch repair
 Recombination repair

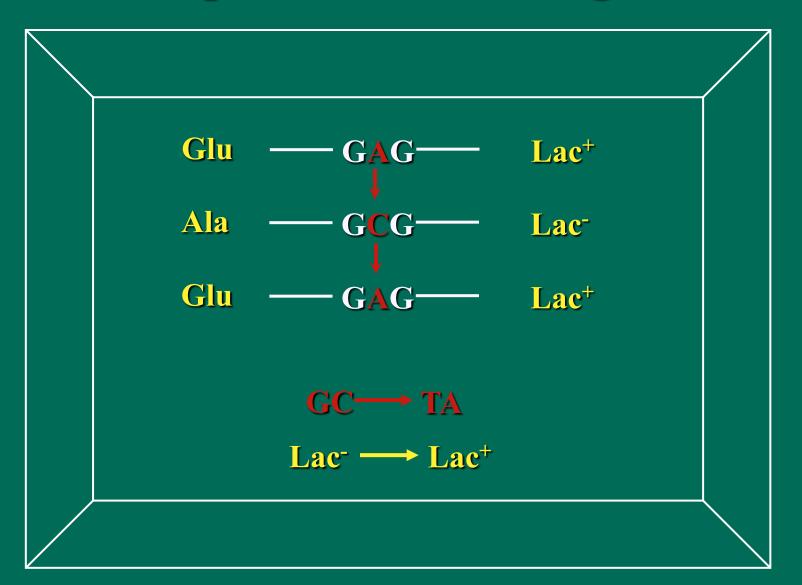


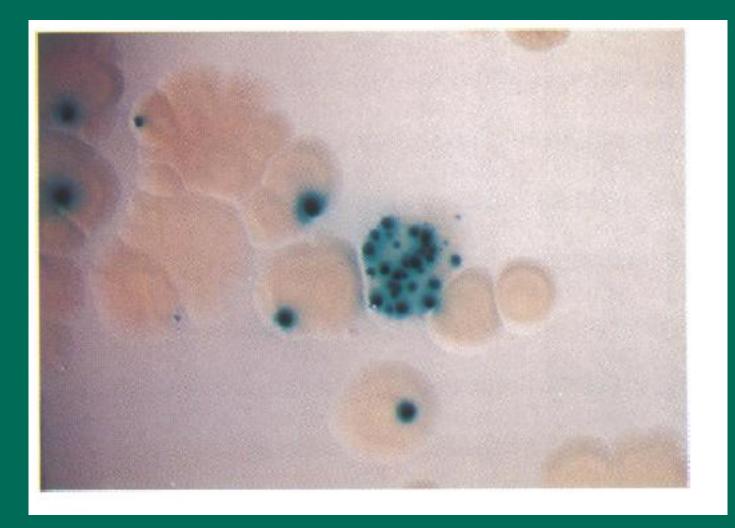
LBCipro 1Cipro 2Cipro 3Cipro 4Cipro 5WT:tolCng/ml

Plate Test


- Mixture of wild-type and sensitive mutant
- Antibiotic applied to center of plate
- Concentration gradient, killing in center
- No killing on outer rim of plate
- Selective killing at low concentration generates ring of wild-type cell color


Previous Approach - Inactivate Genes


- Knockout repair or other system
- Found many repair genes
- Many as mutators


Finding mutators by papillation

Look for specific base changes in *lacZ*

Identification of MutY and MutM in E.coli

The *mutY* gene: a mutator locus in *Escherichia coli* that generates G.C---T.A transversions.

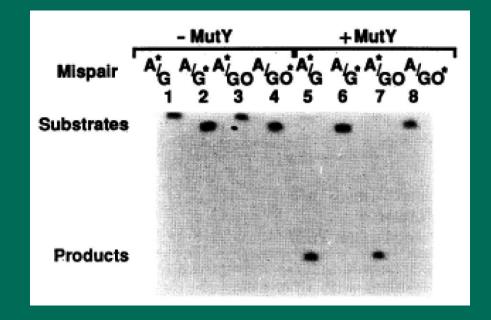
Nghiem Y. Cabrera M, Cupples CG, Miller JH

Department of Biology, University of California, Los Angeles 90024.

We have used a strain with an altered *lacZ* gene, which reverts to wild type via only certain transversions, to detect transversion-specific mutators in *Escherichia coli*. Detection relied on a papillation technique that uses a combination of beta-galactosides to reveal blue Lac+ papillae. One class of mutators is specific for the G.C--T.A

PNAS 1988

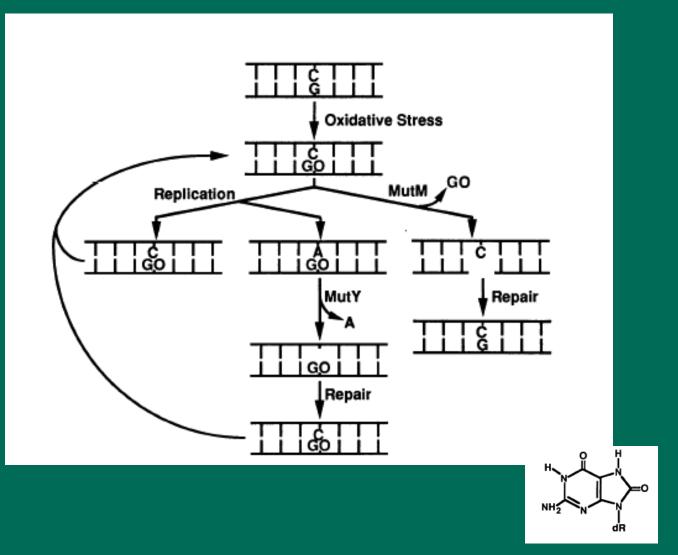
mutM, a second mutator locus in Escherichia coli that generates G.C---T.A transversions.

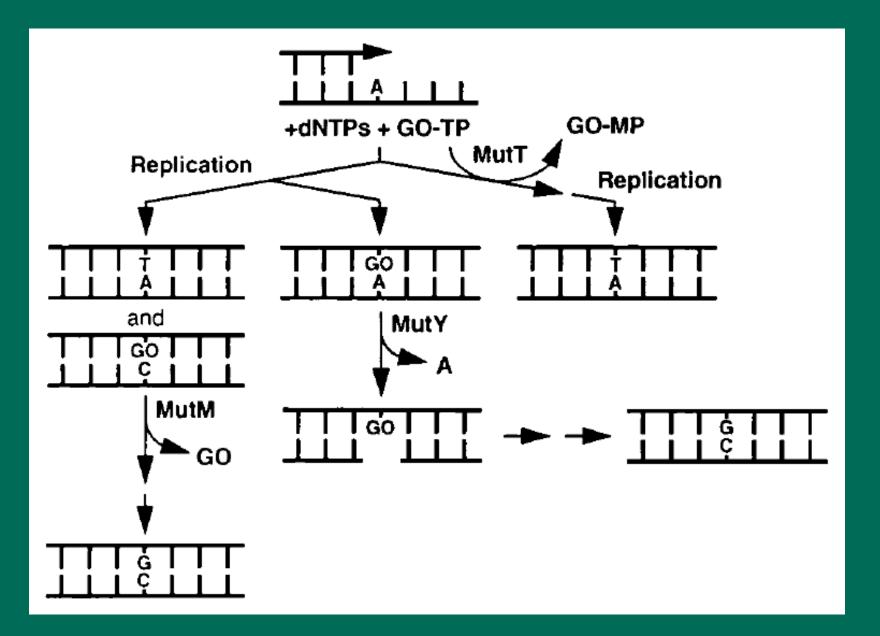

Cabrera M, Nghiem Y, Miller JH.

Department of Biology, University of California, Los Angeles 90024.

We used strains carrying specific *lacZ* alleles to identify a new mutator locus in *Escherichia coli* which generates only G.C.-T.A transversions among base substitutions. The locus, *mutM*, mapped near the *cysE* locus, which is at 81 min on the genetic map.

J Bacteriol 1988

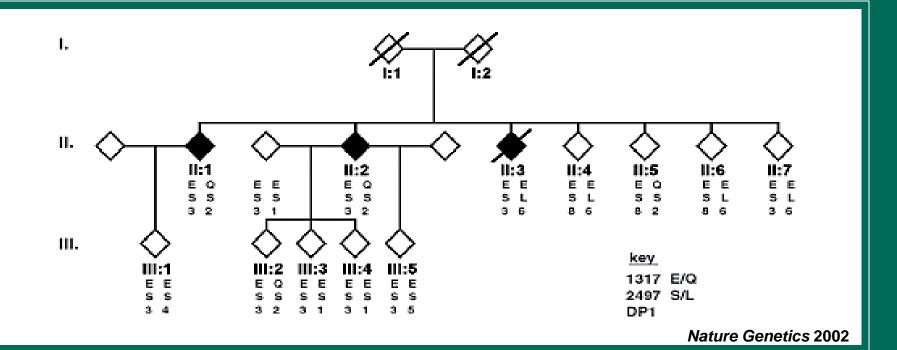

MutY prevents G to T mutations in E.coli

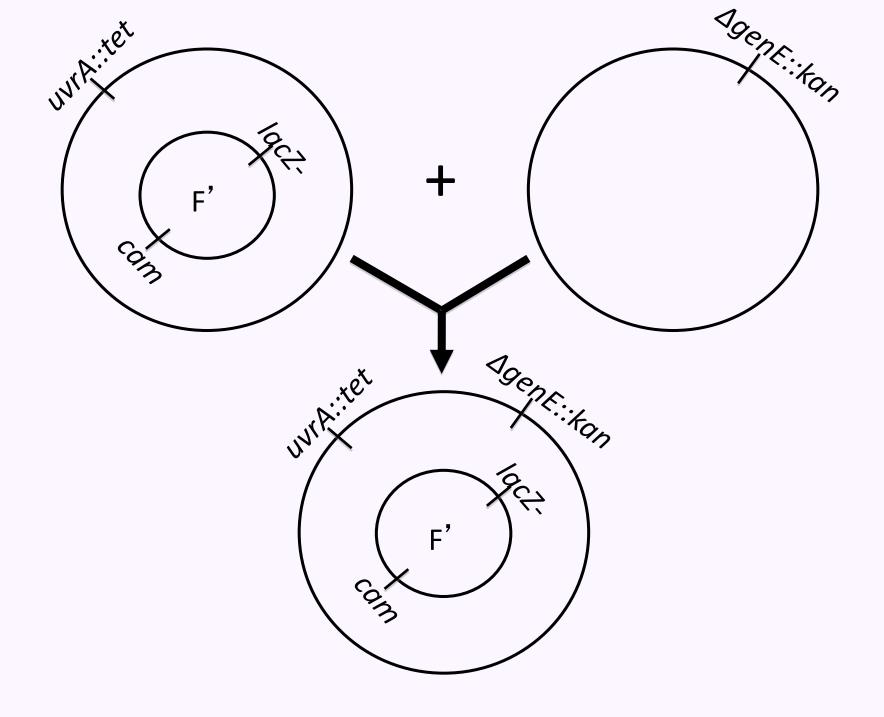

Mutation frequency of mutM, mutY, and mutM mutY strains

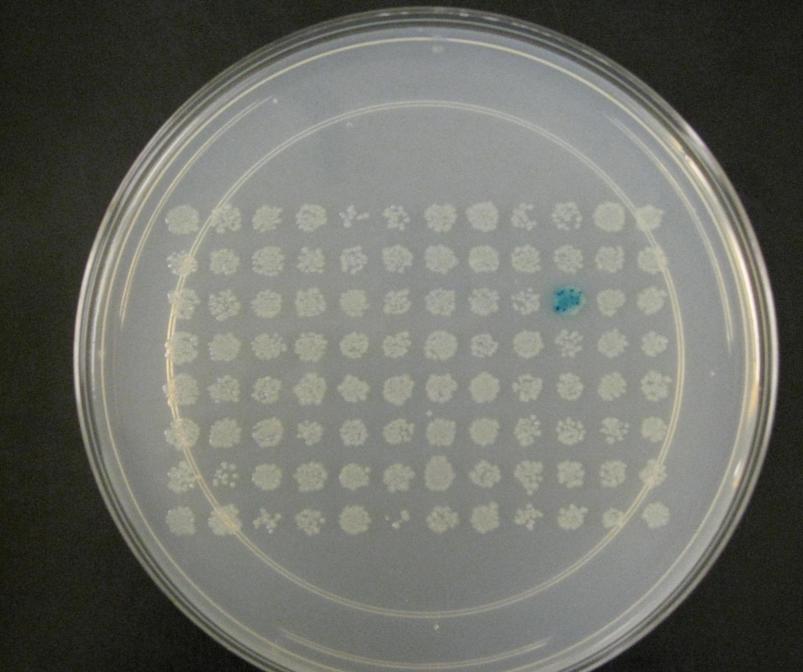
Strain	No. of Lac ⁺ revertants	No. of Rif ¹ colonies
CC104	3	5-10
CC104 mutM	25	151
CC104 mutY	62	290
CC104 mutM mutY	1900	8200
CSH115 (mutS)	ND	760
CSH116 (mutD)	ND	4900

Oxidative DNA damage repair

7,8-dihydro-8-oxoguanine (8-oxoG or GO)




Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors.

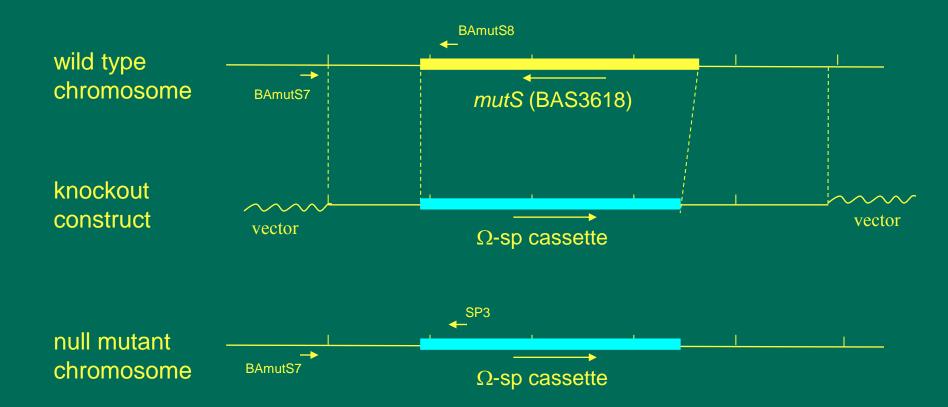

Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP.

Institute of Medical Genetics, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, UK.

Inherited defects of base excision repair have not been associated with any human genetic disorder, although mutations of the genes mutM and mutY, which function in Escherichia coli base excision repair, lead to increased transversions of G:C to T:A. We have studied family N, which is affected with multiple colorectal adenomas

Studies of mutagenesis and repair in Bacillus anthracis

B. anthracis genes (absent in E. coli) that are possibly involved in DNA replication, recombination, and repair


BAS number	COG	Predicted function
BAS0234 BAS5196	COG4294 COG4294	UV-endonuclease, putative UV-endonuclease, putative
BAS1439	COG1573	uracil-DNA glycosylase family protein (BAS5250, 2 nd UDG)
BAS4536	COG0827	hypothetical protein (putative adenine-specific DNA methylase)
BAS0852	COG1041	hypothetical protein (predicted DNA modification methylase)
BAS3332	COG2176	exonuclease family protein (putative dnaQ homolog)
BAS3404	COG2176	DNA polymerase, epsilon subunit, putative
BAS3669	COG2176	DNA polymerase, alpha subunit, Gram-positive type
BAS4780	COG2176	sporulation inhibitor KapD
BAS4451	COG1039	ribonuclease HIII
BAS2504	COG1372	intein homing endonuclease-related protein
BAS4109	COG1533	spore photoproduct lyase
BAS0039	COG1658	primase-related protein
BAS4858	COG1658	Toprim domain protein

BAS number	COG	Predicted function
BAS1831	COG1793	lipoprotein, putative (putative DNA ligase)
BAS4448	COG1796	PHP domain protein (polymerase X)
BAS0826	COG2094	methylpurine-DNA glycosylase family protein
BAS1291	COG2887	hypothetical protein (very little homology to RecB)
BAS2046	COG3547	transposase, IS110 family, OrfA
BAS2047	COG3547	transposase, IS110 family, OrfB
BAS4475	COG3611	DNA replication protein DnaB
BAS3807	COG3747	hypothetical protein (putative terminase)
BAS1060	COG3857	ATP-dependent nuclease, subunit B
BAS0424	COG3935	prophage LambaBa04, DnaD replication protein, putative
BAS0879	COG3935	DnaD domain protein
BAS1455	COG3935	DNA replication protein DnaD
BAS3088	COG3935	DnaD domain protein
BAS3828	COG3935	prophage LambaBa02, DNA replication protein
BAS5042	COG4095	comF operon protein 1
BAS2732	COG4912	hypothetical protein (predicted DNA alkylation repair enzyme)
BAS3091	COG4912	hypothetical protein (predicted DNA alkylation repair enzyme)
BAS4783	COG4912	hypothetical protein (predicted DNA alkylation repair enzyme)

Unique detoxification enzymes in *B. anthracis*

- 5 catalases
- 3 Fe-Mn superoxide dismutase
- 1 cytoplasmic Cu-Zn superoxide dismutase
- 1 bromoperoxidase
- 1 thiolperoxidase
- 8 thioredoxin proteins

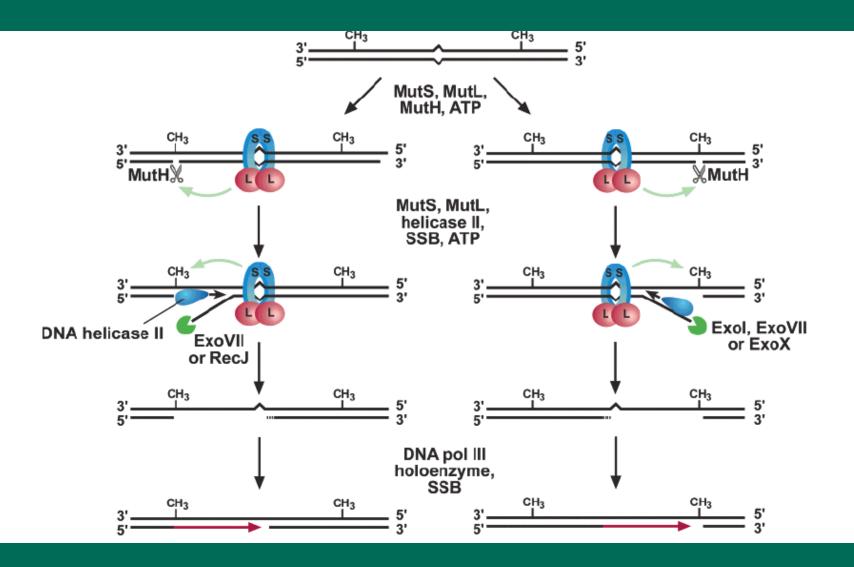
B. anthracis knockout strategy

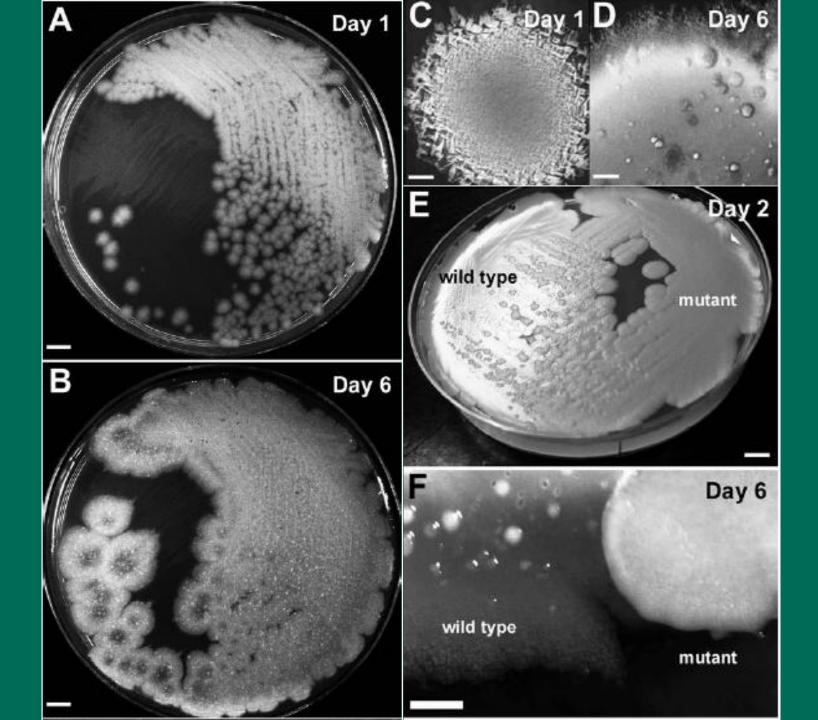
B. anthracis knockout mutants constructed

mutS (DNA mismatch repair protein)

mutY (A/G-specific adenine glycosylase)

mutM (formamidopyrimidine-DNA glycosylase)

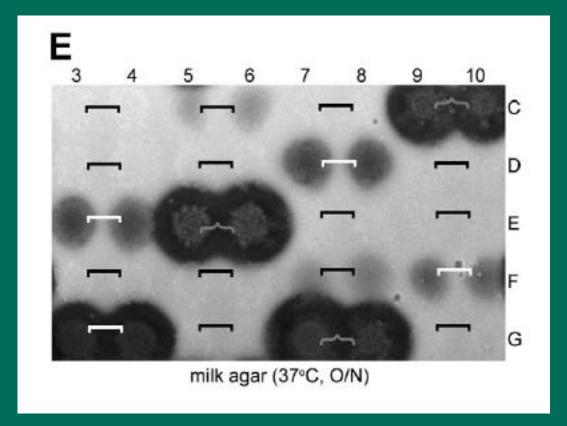

mutM, *mutY*

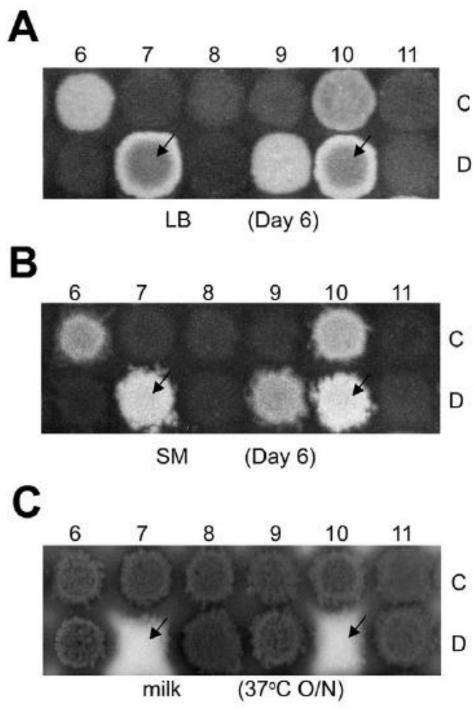

ndk (nucleoside diphosphate kinase)

ndk, mutS

bromoperoxidase

	<u>f</u>	μ
Wild type	2.8 (1.7-4.7)	1.6 (1.2-2.3)
mutY	33 (31-56)	9.4 (9.0-14)
mutY, M	2800 (2500-3300)	430 (390-500)
mutS	500 (480-550)	87 (84-94)





LB agar (Day 2)

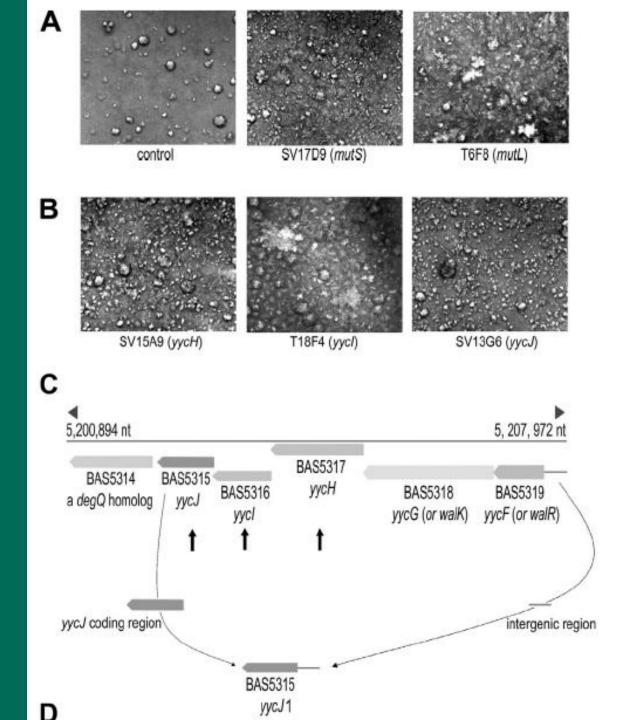
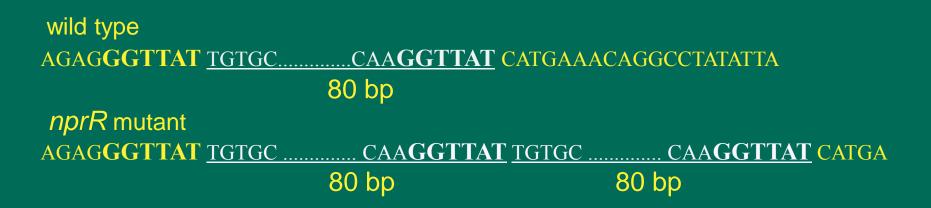

SM agar (Day 6)

Fig. 3. A–C. Photographs showing two transposon-insertion mutants T17D7 and T17D10 (marked with black arrows), which display similar phenotypes as the group A papillation mutants. D–E. photographs of cells harbouring pUTE29 or pUTE29*nprR* on LB and milk plates.


- C A. On the LB plate.
 - B. On the sporulation (SM) plate.
 - C. On the milk plate.

Mutations in *nprR*

Type of change	Occurrence
Base substitutions	17
Small insertions and deletions	21
Tandem duplications	3
Large deletions	17
Total	58

80 bp tandem duplication

204 bp large deletion

Table 5	. Tandem duplications de	tected in the recJ n	nutants.
Nie	PASOFOS	Ossumanasi	
No.	BAS0566	Occurrenceª	
1	333-339, 7 bp	17	ATTTTGAAATTAT
2	921-963, 43 bp	12	TAGATTTAAATTA
3	237-244, 8 bp	4	GCTGGATGAATG
4	588-644, 57 bp	4	ATTATAATATAGC
5	1011-1060, 50 bp	4	GGGAATTGATGC
6	222-237, 16 bp	3	GGATG TGAA G GG
7	401-420, 20 bp	3	CACTTGAAGAAG
8	336-345, 10 bp	2	TTGAAATTATAAA
9	338-347, 10 bp	2	GAAATTATAAATT
10	384-426, 43 bp	2	GAAAAGGATAT
11	425-435, 11 bp	2	TGAAGAAGGTAT
12	463-500, 38 bp	2	GTTATTATATATG
13	616-630, 15 bp	2	TTTAGATATTCAT
14	968-999, 32 bp	2	TTAAATTAGAAG
15	87-220, 134 bp	1	ATT AT GT CAGGG
16	133–140, 8 bp	1	AATGGAAAGATC
17	213-223, 11 bp	1	TGTAGAAGAGGA
18	225-304, 80 bp	1	TGTGAAGGGGAA
19	230-237, 8 bp	1	AGGGGAAGCTGG
20	326-385, 60 bp	1	GTTTT GGATTTTG
21	418-504, 87 bp	1	AGATAGATTGAAG
22	422-508, 87 bp	1	AGATAGATTGAAGAAGG
23	509-554, 46 bp	1	ATGGAAGGAGG
24	599-670, 72 bp	1	CGCTTGTATATA
25	736-781, 46 bp	1	AAAGGTCAGTAT
26	809-821, 13 bp	1	GATGTACTTTTAG
27	821-900, 80 bp	1	GCTATTACTTAA
28	1038–1060, 23 bp	1	GAGGTTTAATGC
29	1136-1172, 37 bp	1	CGTTGTATAAAT
Total		76	

a. Tandem duplications detected in recJ and recJ' mutants.

b. Tandem duplication sequences are underlined. Short homologous sequences are in

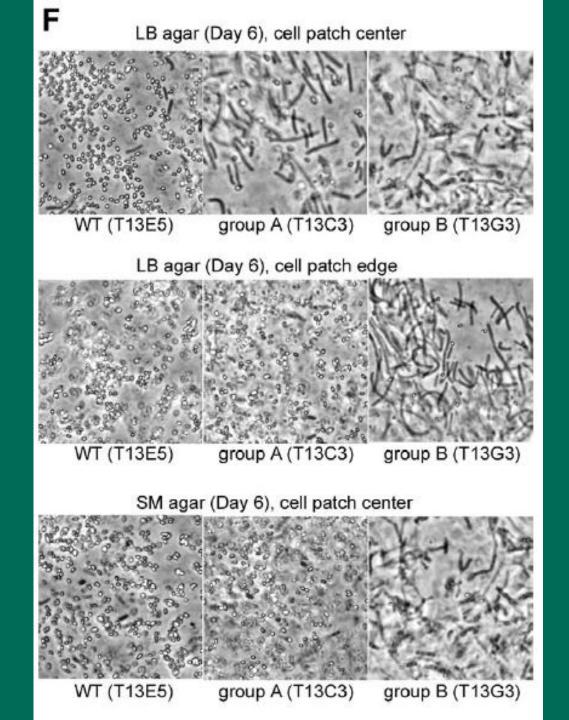
List of identified Bacillus anthracis mutator genes and their functions

No.	ORF	Product				
Genes	Genes previously identified to be mutagenic when disrupted:					
1	mutS	DNA mismatch repair protein MutS				
2	mutL	DNA mismatch repair protein MutL				
3	mutY	A/G-specific adenine glycosylase				
4	poll-mutM	DNA polymerase I				
		formamidopyrimidine-DNA glycosylase				

Additional genes identified in this study:

5	уусЈ	metallo-beta-lactamase family protein
6	BAS4289	helicase, putative
7	recJ	single-stranded-DNA-specific exonuclease

Distribution of mutations leading to Rif^r in *B. anthracis*


<i>B. anthracis</i> site (bp)*	Amino acid change	Base-pair change	Sponta	aneous	mutS	mutY	mutY mutM	5AZ	MNNG
	onango		Operac		mate	macr	maan	07.12	
1361	Q454R	AT→GC	15	24*	19	0	0	0	0
1 400	H467R	AT→GC	17	23*	20	0	0	0	2
1000			20	00*	4	0	0	0	24
1399	H467Y	GC→AT	20	23*	1	0	0	0	31
1349	S450F	GC→AT	0	0	0	0	0	0	0
1415	S472F	GC→AT	1	4*	0	0	0	0	8
1415	S472Y	GC→TA	1	1	0	10	0	0	0
1360	Q454K	GC→TA	1	2*	0	27	30	0	0
1300	Q404N	GC-7TA	1	2	U	21	30	0	0
1361	Q454L	AT→TA	0	0	0	0	0	0	0
1375	T459S	AT→TA	0	0	0	0	0	0	0
1402	K468Q	AT→CG	0	0	0	0	0	0	0
			_	-			-		-
1400	H467P	AT→CG	1	1	0	0	0	0	0
1349	S450C	GC→CG	0	0	0	0	0	0	0
1399	H467D	GC→CG	0	0	0	0	0	17	0
1558	S453C	GC→CG	0	0	0	0	0	0	0
1556	54550	60706	0		0	0	0		
Total 14			56	78*	40	37	30	17	41

wild type2.8° (1.7–4.7)b, 12° (8-18)MUT1E1 (recD2)477° (377-555)BAS4289' (recD2)538° (435-866)BAS1146 (uvrD)20° (10-47)BAS3618 (mutS)500° (480-550)	8)

^aThe value was taken from Zeibell et al 2007. ^bValues in parentheses are 95% confidence limits (Dixon and Massey, 1969). ^cThe value was obtained in this study.

Acknowledgement

Hanjing Yang Sharon Anguila Krystal Ziebell Cindy Tamae Tarmar Sardarrian Martha Pastuszka Madeline Yung Cameron Sikavi Anne Liu Katherine Kim Bindu Patel Vivian Shi Andrea Chan Hannah Hong Jennifer Lee Aileen Chang

Search for New Mutational Pathways

Brazilian amputee model dead at 20

•STORY HIGHLIGHTS

NEW: Brazilian amputee model Mariana Bridi da Costa died early Saturday
 Da Costa's hands, feet were amputated after she contracted septicemia
 Da Costa placed sixth in the Miss Bikini International competition in China

Family Mourning MRSA Death Of Frankford Teen

PHILADELPHIA (CBS 3) — A local family is speaking out after they say their young son died of the highly contagious infection MRSA.

Reporting Valerie Levesque

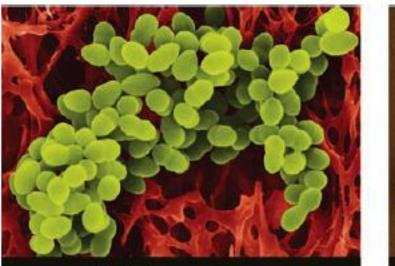
Levesque Michael Literski was a 13-year student at the Ethan Allen Elementary School and a Frankford resident. His family thought he had a bad cold or the flu until he died February 16.

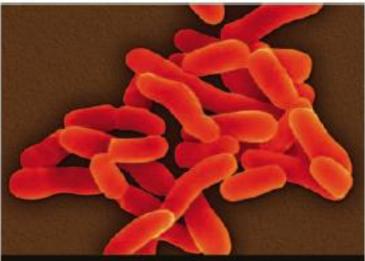
"All of a sudden, he just said 'it's time' and blood just started pouring out of his mouth and he was gone in my arms and my son was doing CPR on him," Michael's grandmother Mary Ann Gwalthney said.

The family told CBS3 that the medical examiner's office did an autopsy.

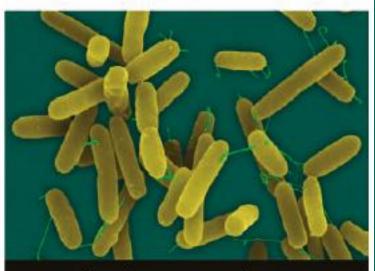
"They took a part of the lung and put it in the machinery and found out it was MRSA," Mary Ann said. "He was a perfectly healthy, normal 13-year-old boy looking to graduate from school, and just wiped out of our arms."

A Frankford family says their son, Michael Literski, died of MRSA. CBS


Related Slideshows

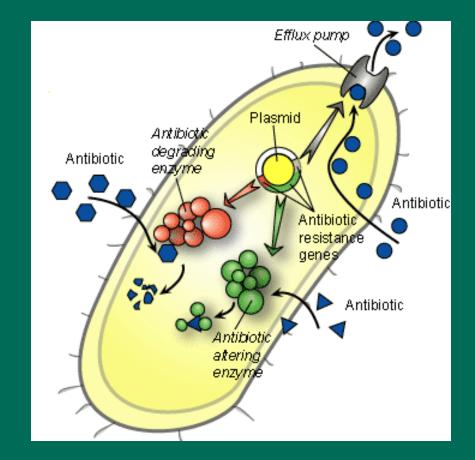

World Welcomes Mardi Gras 2009

Red Carpet Fashions At 81st

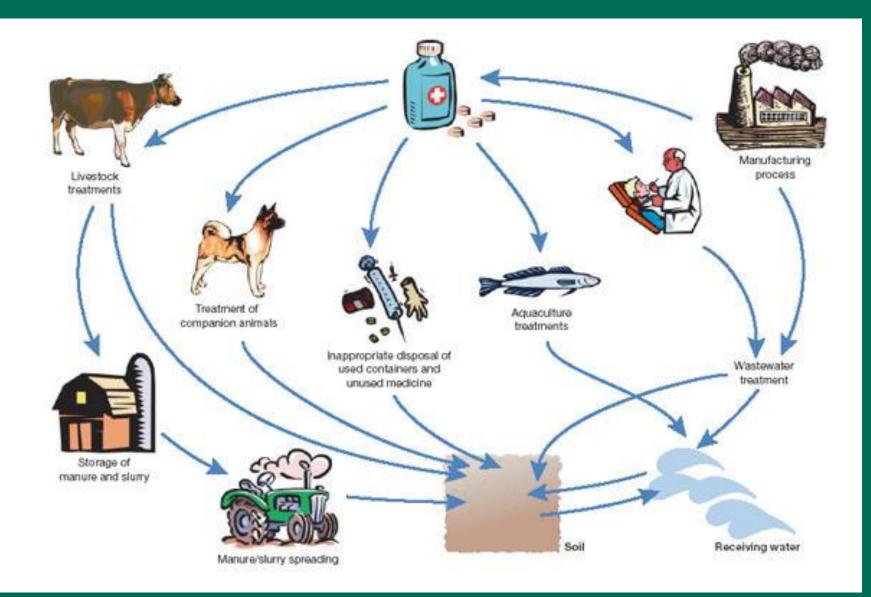

Staphylococcus aureus

Mycobacterium tuberculosis

Acinetobacter baumannii

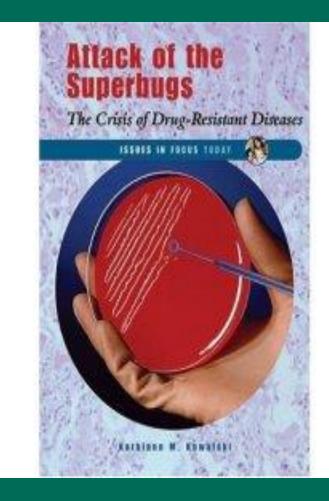

Pseudomonas aeruginosa

Problem


- We are losing the war on antibiotics
- Need to find new antibiotics/treatments
- Need to change behavior

Resistance Mechanisms

Altered receptors for the drug Decreased entry into the cell Destruction or inactivation of the drug



Route of Pharmaceuticals Entering Our Environment

Some Statistics

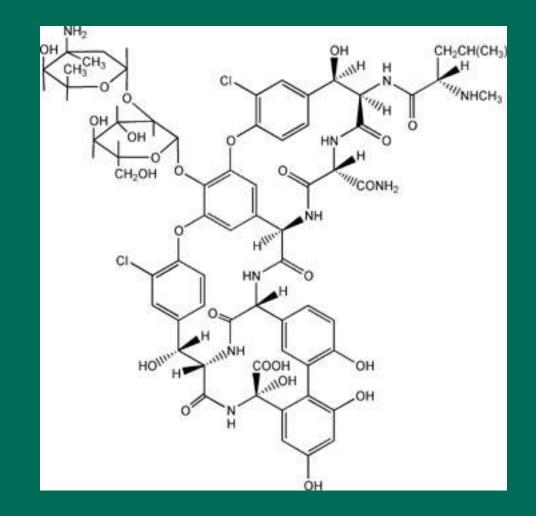
- more than 70 percent of the bacteria that cause hospital-acquired infections are resistant to at least one of the antibiotics most commonly used to treat them.
- Many infectious diseases are increasingly difficult to treat.
- Over 2 million fall prey to microbes once they get in the hospital, in this country alone. Some 90,000 die. About 70 percent of those are infected by drug-resistant bacteria. Costs for treatment of these infections approach \$5 billion a year. Overall, the yearly toll exacted by drug-resistant infections in the United States is estimated to exceed \$30 billion.

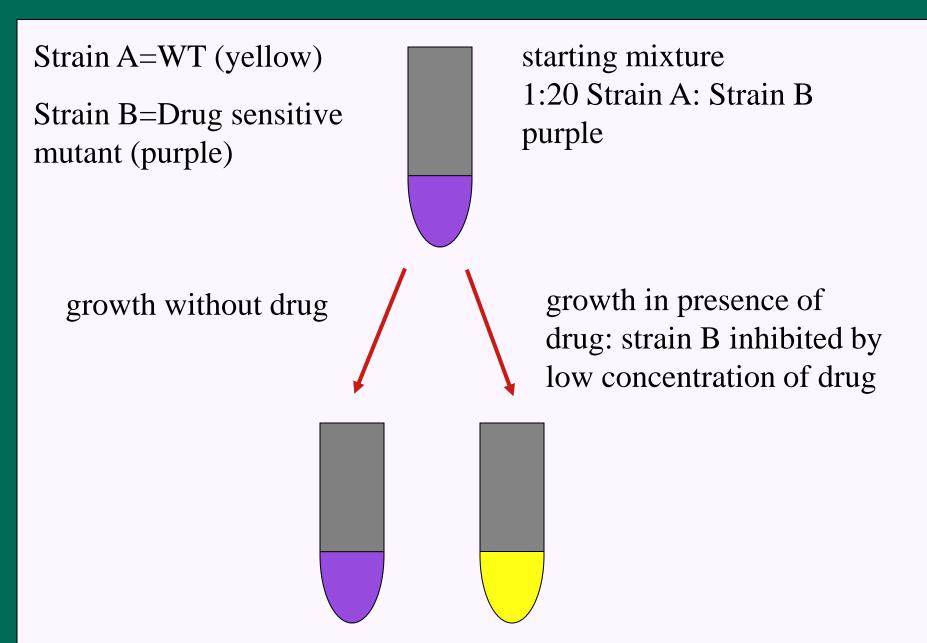
In the USA, more people die from MRSA than from AIDS

- In 2005
 - 20,000 people died from MRSA
 - 17,000 people died from AIDS

Statistics

•Farm animals in the United States receive 24.6 million pounds of antibiotics a year, which may be fueling the rise of drug-resistant bacteria, according to the Union of Concerned Scientists (UCS). UCS noted that about 70 percent of all antibiotics made in the United States are used to fatten up livestock.


•<u>Source:</u> "Hogging It: Estimates of Antimicrobial Abuse in Livestock," by Margaret Mellon, Charles Benbrook, and Karen Lutz Benbrook, Union of Concerned Scientists, January 2001 (report available at <u>www.ucsusa.org</u>).


Approaches

- Find new antibiotics from natural sources
- Make chemical derivatives of existing antibiotics
- Find new targets in cell
- Find new combinations of existing drugs
- Find co-drug targets and co-drugs (potentiators)
- Exploit genomics total knockout collections, metabolomic simulations

A successful example of a drug plus co-drug combination is the use of β -lactamase inhibitors together with β -lactams, such as penicillin

Vancomycin

