For info on our summer events, please check our website soon....

HTTP://EDUCATIONGROUP.MIT.EDU

EDX PLATFORM FOR RESIDENTIAL COURSES EXAMPLES AND COMPARISON TO MOOCS

Saif Rayyan

srayyan@mit.edu

Physics, MIT

and many many collaborators!

History

```
Spring 2012
      Edx (MITx) offered 6.002x
      RELATE offered Mechanics Online -loncapa
Summer 2012
      RELATE offered Mechanics Online focused on
      certification for Teachers+ Moved Content to Edx
Fall 2012
      Edx/MITx for Residential Courses (8.01)
      Formation of ODL→MITx
Spring 2013
      Expanded Residential Offerings
```

Spring 2013

https://lms.mitx.mit.edu

MITX HOME

FIND COURSES

MITx: Digital Learning Online

- a) MIT (College) is expensive, move it online
- b) MIT GIRs are useless
- c) MOOCs are cool
- d) None of the above

- MIT (College) is expensive, move it online
- MIT GIRs are useless
- MOOCs are cool
- d) None of the above

LESSON:

If it is not broken, don't fix it.

- Moved to studio format (TEAL) ~2000
- Tables 3 groups of 3 students each
- Tons of white board space.
- Experiments integrated in the class

Why TEAL?

Courses using
Interactive Engagement
(e.g. peer instruction)
have much higher gain
(0.48 compared to 0.23)

Hake et al. 1996, 6000 students, 62 classes

TEAL- Good:

• Interactive engagement: group problem solving, miniexperiments, E&M visualizations, Higher staff-student ratio.

TEAL- Good:

- Interactive engagement: group problem solving, miniexperiments, E&M visualizations, Higher staff-student ratio.
- Use of Technology (to increase interactivity): Clicker questions, Simulations, Visualizations.

TEAL- Good:

Increased Attendance

Lower failing rates

More flexibility

TEAL- what is not working?

Reading

- Read or not?
- Too much material
- Not interactive

Homework

- What do students do?
- Delayed feedback
- TEAL is not designed for lecture

TEAL- what is not working?

Reading

- Read or not?
- Too much material
- Not interactive

Homework

- What do students do?
- Delayed feedback
- TEAL is not designed for lecture

Experiments on MITx

Reading:

Reading questions (8.01 Fall 2012)

Interactive e-text (8.01cc and 8.01esg Fall 2012)

Flipped Classroom: watch lectures before coming to class (8.02cc and 8.02esg Spring 2013)

Experiments on MITx

Reading:

Reading questions (8.01 Fall 2012)

Interactive e-text (8.01cc and 8.01esg Fall 2012)

Flipped Classroom: watch lectures before coming to class (8.02cc and 8.02esg Spring 2013)

Homework:

Online homework (8.01CC/Esg).

Written homework + check answers online (8.01, 8.02 cc and esg)

Experiments on MITx

Reading:

Reading questions (8.01 Fall 2012)

Interactive e-text (8.01cc and 8.01esg Fall 2012)

Flipped Classroom: watch lectures before coming to class (8.02cc and 8.02esg Spring 2013)

Homework:

Online homework (8.01CC/Esg).

Written homework + check answers online (8.01, 8.02 cc and esg)

Vs Edx-Whole course:

8.02x (based on Walter Lewin's Lectures)

8.01x (based on Walter Lewin's Lectures)

8.01 Reading Questions Fall 2012

2011

Paper based, open response

Collected at the beginning of class

Graded by undergraduate TAs (>1500 Sheets/week)

2012

Mostly Multiple choice, graded by edx.

- 20 assignments. Questions target:
 - Simple numerical calculations
 - Conceptual understanding
 - Checking if students did the reading

▶ Week 4

√ Week 5

Week5 Assignment 1 (W5D1)

Reading Question due 2012-10-01T8:45

Week5 Assignment 2 (W5D2)

Reading Question due 2012-10-03T8:45

▶ Week 6

October 3/4 W05D2 Continuous Mass Transport and Rocket Equation

Reading Assignment:

Course Notes:

Continuous Mass Transport and Rocket Equation

Suggested: Young and Freedman: 8.6

:=

≔

MAN WITH A SAND BAG

A person is skating on an icy surface (frictionless). She is holding a bag of sand that is leaking at the rate of b kg/s. The sand leaves the bag at the same speed as the skier.

What happens to the speed of the person as the sand keeps leaking from the bag?

- the speed increases
- the speed does not change
- o the speed decreases
- there is not enough information to decide.

Reading Questions

- 129 questions (~200 parts), 49 new
- Types: 112 M-C, 15 numerical, 2 symbolic.
- Staff time commitment: 5-10 hours/week
- Quality control: 1-2 Grad TAs checking.

Courseware

Course Info

Progress

Instructor

Course Progress

Week 1

Week 1 Assignment 1 (W1D3) (12/12) 100%

Reading Question due 2012-09-07T8:45

Problem Scores: 8/8 1/1 1/1 1/1 1/1

Week 2

Week 2 Assignment 1 (W2D1) (0/19)

Reading Question due 2012-09-10T8:45

Problem Scores: 0/11 0/1 0/3 0/3 0/1

Student Feedback

- Mixed: Some loved it, some hated it
- Survey of 61 students
- On a scale of 1..7 4.5(±1.3)
- 7 positive comments, 7 negative comments
- Positive: beneficial, prepare for class
- Negative: Difficult, too much reading, difficulty accessing the assignment

Learned lessons

- Students work around midnight
- Make questions easier
- Enough testing before release

Discussion: Possible use of MITx?

8.02 flipped, concourse and esg

Concourse:

- Students Watch Walter Lewin's lectures (2-3) over the weekend. (Due Sunday night)
- Work on In-class problems+ start with online HW on Monday
- Finish online HW on Wednesday, turn in written solutions
 Wednesday night
- Quiz on Thursday

ESG:

No online HW

8.02 flipped, concourse and esg

Evaluated by TLL (Glenda Stump and Jennifer DeBoer)

- Challenges:
 - Alignment of different curricula
 - Release content before it is ready
 - Trying to do too much
 - Working with a developing platform
- Learning objectives:

Week 6

Lecture 11: Magnetic **Field and Torques**

Ö

Lecture due Mar 18, 2013 at 21:00

Lecture 12: Review for Exam 1

ଞ

Lecture due Mar 18, 2013 at 21:00

Lecture 13: Moving Charges in Magnetic Fields

Lecture due Mar 18, 2013 at 21:00

Post lecture Assessment of learning objectives Survey due Mar 18, 2013

Problem Solving

Problem Solving

HW₆

at 21:00

at 09:00

Homework due Mar 20. 2013 at 21:00

ଞ

Post Homework Assessment of learning objectives Survey due Mar 20, 2013

Post lecture

Week 6

Lecture 11: Magnetic Field and Torques Lecture due Mar 18, 2013 at 21:00 Lecture 12: Review for Exam 1 Lecture due Mar 18, 2013 at 21:00 Lecture 13: Moving Charges in Magnetic Fields

Post lecture Assessment of learning objectives Survey due Mar 18, 2013 at 09:00

Lecture due Mar 18, 2013

Problem Solving

Problem Solving

HW₆

at 21:00

Homework due Mar 20, 2013 at 21:00

Post Homework Assessment of learning objectives

Survey due Mar 20, 2013 at 21:00

Post Homework

≔ Week 1 ▶ Week 2 WEEK 6 :LEARNING OBJECTIVES ASSESSMENT I am confident that I can: (answer using a scale from 1-7, 1 being least confident and 7 being most confident) Week 3 calculate the force on a charge moving in a magnetic field. Week 4 1 Not Confident at all Week 5 2 Week 6 3 Lecture 11: Magnetic Field 4 Moderately Confident and Torques 5 Lecture due Mar 18, 2013 at 21:00 6 Lecture 12: Review for Exam 7 Very Confident Lecture due Mar 18, 2013 at 21:00 Lecture 13: Moving Charges ଅ in Magnetic Fields Lecture due Mar 18, 2013 at 21:00 Post lecture Assessment of explain the magnetic field of a set of Helmholtz coils in the Helmholtz and anti-Helmholtz configuration. Ö learning objectives 1 Not Confident at all Survey due Mar 18, 2013 at 09:00 2 **Problem Solving** 3 Problem Solving 4 Moderately Confident HW6 ପ Homework due Mar 20, 2013 5 at 21:00 6 Post Homework Assessment Ö of learning objectives 7 Very Confident Survey due Mar 20, 2013 at 21:00

Student Feedback

Highest rated activities:

Handing in Written Assignments 4.4/5

Doing homework in class
 4.3/5

Positive:

it presents E&M material in an organize manner

I liked to be able to watch the lectures at my own pace

You can check your answers and it acts as a database of your work

Not so Positive

the lecture videos took up a lot of time, and I prefer learning from Analia to learning from a video

There were bugs every now and then

online learning does not work well for me

I learned better in class rather than on a computer screen. I am a visual learner

Best way to learn: Practice problems with someone nearby to help answer questions. 2. Lots of problems.

Collaborators

Analia Barrantes ESG/RELATE

Isaac Chuang and ODL

Dave Pritchard RELATE

Yoav Bergner RELATE

Colin Fredericks RELATE

Raluca Teodorescu GWU

TLL

Peter Dourmashkin Physics

John Belcher Physics

Deepto Chakrabarty Physics

OCW

Concourse

ESG

And many many wonderful graduate and undergraduate students