How to build tutoring systems that are almost as effective as human tutors?

Kurt VanLehn

School of Computing, Informatics and Decision Systems Engineering Arizona State University

Outline

Next

Types of tutoring systems

- ◆ Step-based tutoring ≈ human tutoring
- How to build a step-based tutor
- Increasing their effectiveness
- Flame

Two major design dimensions

- Personalization of assignments
 - Non-adaptive
 - Competency gating
 - » using sequestered assessments
 - » one factor per module
 - Adaptive task selection
 - » using embedded assessments
 - » one factor per knowledge component

Granularity of feedback, hints & other interaction

- Assignment (e.g., conventional homework)
- Answer (e.g., most regular tutoring systems)
- Step (e.g., most Intelligent Tutoring Systems)
- Sub-step (e.g., human tutors & some ITS)

Personalization

- Non-adaptive
- Competency gating
- Adaptive task selection
- Granularity
 - Answer
 - Step
 - Sub-step

What tangential speed, v, must the bob have so that it moves in a horizontal circle with the string always making an angle θ from the vertical?

Express your answer in terms of some or all of the variables m, L, and θ , as well as the acceleration due to gravity g.

Example: Andes **Physics Tutor**

Competency gating dt5a Edit Physics Help Adaptive task selection A 2000 kg car in neutral at the top of a 20.0 deg inclined Granularity driveway 20.0 m long slips its parking brake and rolls down. 0 T Answer If we ignore friction and drag, what is the magnitude > Step of the car's velocity when it hits the garage door? Sub-step Let m be the mass m = 2000 kg Answer: Fw x= z-axis 20\m +Let N be the normal force x due to the driveway 100% car Let Fw be force of gravity а Fw Let a be acceleration of the car > < Ш

Personalization

> Non-adaptive

Example: Cordillera Physics Tutor

	St	ident Inte	enfiace		
Problem Statement Dialog History You said: definition of kinetic energy Tutor said: Okay. Please write the eck kinetic energy applies to this problem You said: value='ke1=1/2*m*v1^2' You said: Now it is easy to calculate magnitude of v1 is 5.0 m/s. Tutor said: Before going on to the napplication of this equation. Tutor said: Can we infer the directed from the rock's kinetic energy at T1	Variables Equations Julation for how the definition of m at T1. te the magnitude of v1. The ext step, let's think about the on of the velocity of the rock at		Problem A 0.6 kg kinetic e at point f We defin T1	Statement Dialog Histo rock in space has a velo nergy of 7.50 J 3. What is the net work d the T0: the time point whe the time point when the step	
You said: no, we cannnot Tutor said: Excellent! Please explain	why.		Problem	Statement Dialog History	
Only the magnitude of the velocity the definition of kinetic energy		of	Name m	Description The mass of the rock is (
<u>₽ о</u> к Со	mments	2	v0 KE0 v1	The velocity of the rock of The kinetic energy of the The velocity of the rock of	roc
				The kinetic energy of the The work done on the ro	ck
			TME0	The total mechanical end The total mechanical end	- 77
					10

Personalization

- Non-adaptive
- Competency gating
- Adaptive task selection

- Granularity
 - Answer
 - Step
 - Sub-step

Problem	Statement	Dialog History	Variables	Equations	
Name	Description	1			
m	The mass	of the rock is 0.	60 kg		
v0	The velocit	y of the rock d	uring T0 is	2.0 m/s at an unknown orienta	
KE0	The kinetic energy of the rock at T0 is 1.20 J				
vl	The velocity of the rock during T1 is 5.0 m/s at an unknown orientati				
KE1	The kinetic energy of the rock at T1 is 7.50 J				
Wnet01	The work done on the rock				
TME0	The total mechanical energy of the system at T0				
TME1	The total m	nechanical ener	gy of the s	system at T1	

Example: Carnegie Learning's Tutors

6 s	olver					
		Tutor	Solver	Windows	Help	
?	So	ve fo				C. File
2	2	5=1	2.5T			15
	2	5	2.5	Divide b	oth sides by	skil
solver		0 = 1	ſ			
ч	C. Tuber ce					

G Grapher

Personalization

- Non-adaptive
- Competency gating
- Adaptive task selection
- Granularity
 - Answer
 - > Step
 - Sub-step

7

Carnegie Learning's skillometer shows knowledge components & current competence

Example: Entity-relation Tutor

http://dbplaca.pr	arsoncmg.com:8005	ED Tutos Mi	ous coft Testown	of Eveloper				Ŭ
			Problem	History	Student Model	Tu	torial	– A
eam2), date, judge ach time a team so cored (1, 2 or 3), a iumber of seats an ney come from.	yed. For each match, s involved in the match cores, the database re nd the time (in minute d the city. For each jud	there is a uniqu n, the stadium f ecords the nam s) during the ga ge, the databas	the match is pl e of the player ame. Each stac se stores the na	two teams tha ayed at, startir who scored , 1 lium has a na ame, number	at play (team1 and og time and the score he number of points me (unique), the (unique), and country		Almo thou Che entit canr	Grai – A ≻ S – S
Coun			×		Name		l	- 5
Scored_for	N BELONGS TO	leam1 leam2	VSISTS_OF		Points			
Number		\searrow	PLAY	N MA	TCH			
City	GROUP		Score	Date	Number			
						•		
	Hint	- Subm	it Answer					
Applet applet1 start	ed							Internet

Personalization

- > Non-adaptive
- **Competency** gating
- aptive task selection
- ularity
 - swer
 - **p**
 - b-step

Availability

	Non-adaptive	Competency gating	Adaptive task selection
Answer -based feedback/hints	Thousands	Hundreds	Few
Step -based feedback/hints	Hundreds (few on market)	Tens	Few
Sub-step based feedback/hints	Tens	None	None

Called CAI, CBT, CAL...

	Non-adaptive	Competency gating	Adaptive task selection
Answer -based feedback/hints	Thousands	Hundreds	Few
Step -based feedback/hints	Hundreas (few on market)	Tens	Few
Sub-step based feedback/hints	Tens	None	None

Called Intelligent Tutoring Systems (ITS)

	Non-adaptive	Competency gating	Adaptive task selection
Answer -based feedback/hints	Thousands	Hundreds	Few
Step-based feedback/hints	Hundreds (few on market)	Tens	Few
Sub-step based feedback/hints	Tens	None	None

Outline

Types of tutoring systems
 Step-based tutoring ≈ human tutoring
 How to build a step-based tutor
 Increasing their effectiveness
 Flame

A widely held belief: Human tutors are much more effective than computer tutors

A widely held belief: Human tutors are much more effective than computer tutors

Common belief: The finer the granularity, the more effective the tutoring

Interaction granularity

Granularity of tutoring \approx number of inferences (\rightarrow) between interactions

Answer-based tutoring (CAI)

Granularity of tutorial interaction \approx number of inferences (\rightarrow) between interactions

Answer-based tutoring (CAI)

Step-based tutoring (ITS with ordinary GUI)

Granularity of tutorial interaction \approx number of inferences (\rightarrow) between interactions

Answer-based tutoring (CAI)

Step-based tutoring (ITS with ordinary GUI)

Hypothesis: The smaller the grain size of interaction, the more effective the tutoring

- Because negative feedback is more effective
 - The shorter the chain of inferences, the easier to find the mistake in it
- Because hinting and prompting are more effective
 - The shorter the chain of inferences, the easier to infer them from a hint or prompt

Evidence for an interaction plateau

- 2 studies from my lab
- 3 studies from other labs
- A meta-analysis

Dialogue & text have same content

Dialogue of Andes-Atlas

- T: Here are a few things to keep in mind when computing the acceleration vector for a body at rest. Acceleration is change in *what* over time?
- S: velocity
- T: Right. If the velocity is *not* changing, what is the magnitude of the acceleration?
- S: zero
- T: Sounds good.

Text of Andes

Here are a few things to keep in mind when calculating acceleration for a body at rest. Acceleration is change in velocity over time. If velocity is not changing, then there is zero acceleration....

Results comparing Andes-Atlas to Andes

- Study 1: Andes-Atlas > Andes
 - but content not controlled properly
- Study 2 (N=26): Andes-Atlas \approx Andes (p>.10)
- Study 3 (N=21): Andes-Atlas < Andes (p<.10, d=0.34)</p>
- Study 4 (N=12): Andes-Atlas \approx Andes (p>.10)

Conclusion: Substep tutoring is *not* more effective than step-based tutoring

The WHY2 studies

(VanLehn, Graesser et al., 2007, Cognitive Science)

5 conditions

- Human tutors
- Substep-based tutoring system
 - » Why2-Atlas
 - » Why2-AutoTutor (Graesser et al.)
- Step-based tutoring system
- Text

Procedure

- Pretraining
- Pre-test
- Training (~ 4 to 8 hours)
- Post-test

User interface for human tutoring and Why2-Atlas

Why2-AutoTutor user interface

Only difference between tutoring conditions was contents of yellow box

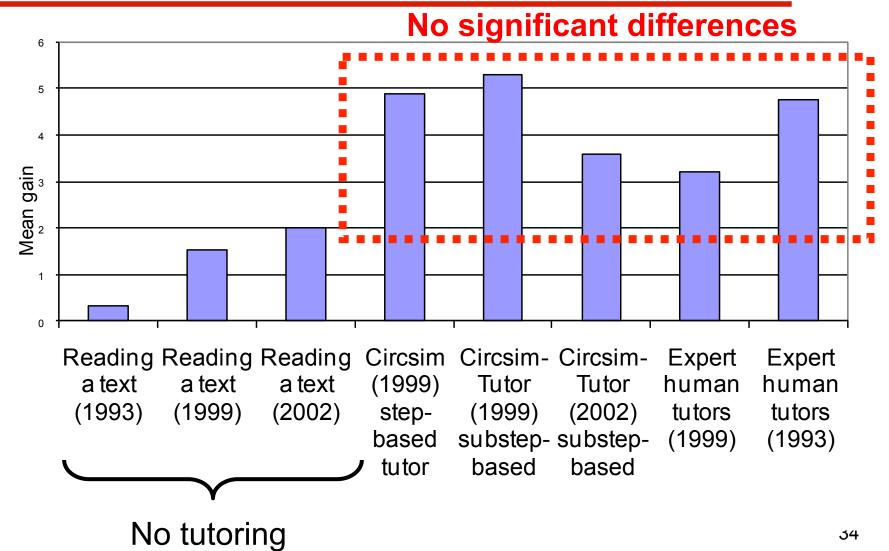
Human tutoring

Why2-Atlas

Why2-AutoTutor

A step-based tutor: A text explanation with same content

Experiments 1 & 2



Results from all 7 experiments

Human tutoring

- = Substep-based tutoring systems
- = Step-based tutoring system
- Tutors > Textbook (no tutoring)
- Atlas (symbolic NLP) = AutoTutor (statistical NLP)

Evens & Michael (2006) also show human tutoring = sub-step-based tutoring = step-based tutoring

Reif & Scott (1999) also show human tutors = step-based tutoring

Katz, Connelly & Allbritton (2003) post-practice reflection: human tutoring = step-based tutoring

Meta-analytic results for all possible pairwise comparisons (VanLehn, 2011)

Tutoring type	vs. other tutoring type	Num. of effects	Mean effect	% reliable
Answer-based	no tutoring	165	0.31	40%
Step-based		28	0.76	68%
Substep-based		26	0.40	54%
Human		10	0.79	80%
Step-based	answer-based	2	0.40	50%
Substep-based		6	0.32	33%
Human		1	-0.04	0%
Substep-based		11	0.16	0%
Human	step-based	10	0.21	30%
Human	sub-step based	5	-0.12	0% 37

Graph of comparisons of 4 tutoring types vs. no tutoring

38

Graphing all 10 comparisons: No tutor < CAI < ITS = ITS w/NL = human

Graph of comparisons of 4 tutoring types vs. no tutoring

The interaction **plateau** hypothesis

- The smaller the grain size of interaction, the more effective the tutoring
 - Assignments < answers < steps</p>
- But grain sizes less than steps are no more effective than steps
 - Steps = substeps = human

Limitations & caveats

Task domain

- Must allow computer tutoring
- Only STEM; not language, music, sports...
- Normal learners
 - Not learning disabled
 - Prerequisite knowledge mastered

Human tutors must teach same content as computer tutors

- Only the type of tutoring (human, ITS, CAI) varies
- One-on-one tutoring

Outline

Types of tutoring systems
 Step-based tutoring ≈ human tutoring
 How to build a step-based tutor
 Increasing their effectiveness
 Flame

Main modules of a non-adaptive step-based tutoring system

Main modules of an adaptive step-based tutoring system

Main types of step analyzers

- Three main methods for generating ideal steps
 - Model tracing: One expert system that can solve all problems in all ways
 - *Example tracing*: For each problem, all acceptable solutions
 - *Constraint-based:* Example + recognizers of bad steps
 + recognizers of steps equivalent to example's steps
- Comparing student and ideal steps
 - Trivial if steps are menu choices, numbers, short texts
 - Harder if steps are math, logic, chemistry, programming
 - Use statistical NLP for essays, long explanations
 - Use probabilistic everything for gestures

Outline

◆ Types of tutoring systems
 ◆ Step-based tutoring ≈ human tutoring
 ◆ How to build a step-based tutor
 ◆ Increasing their effectiveness
 ◆ Flame

The details can make a huge difference. How can we get them right?

- Called A/B testing in the game industry
- During example-based tutoring, when should the tutor *tell* the student an inference vs. *elicit* it from the student?
- Can machine-learned policies improve the tell vs. elicit decision?

5-Stage Procedure

Stage 1	Study: 64 students using random policy.
Stage 2	Calculate Sub-optimal policy.
Stage 3	Study: 37 students using Sub-optimal policy
Stage 4	Calculate Enhancing & Diminishing policies.
Stage 5	Study: 29 students using Enhancing policy vs. 28 students using Diminishing policy

Diminishing policy is calculated to *decrease* learning. Other policies are calculated to *increase* learning.

Calculated policies are composed of many rules, such as:

If problem: difficult
And last tutor action: tell
And student performance: high
And duration since last mention of
the current principle ≥ 50 sec

Machine learner selected features in left side of rule from 50 possible features defined by humans

Enhancing > everything else, which were about the same

Conclusions' from Min Chi's thesis

- Details do matter e.g., the Tell vs. Elicit decision
- Improved policies for Tell vs. Elicit can be induced from modest amounts of data
 - 103 students
- Induced policies can have a large effect on learning gains (d=0.8).
- Developers should do many such A/B studies

Overall conclusion: We need to use more step-based tutors

	Non-adaptive	Competency gating	Adaptive task selection
Answer -based feedback/hints	Thousands	Hundreds	Few
Step-based feedback/hints	Hundreds (few on market)	Tens	Few
Sub-step based feedback/hints	Tens	None	None

Outline

Types of tutoring systems

- ◆ Step-based tutoring ≈ human tutoring
- How to build a step-based tutor

Increasing their effectiveness

Why are there so few step-based tutoring systems?

- K-12 curriculum and standardized tests have evolved to favor answer-based tasks
- K-12 instructors do not view homework as the problem area; it's classroom time that concerns them.
- Instructors need to share knowledge, policies and authority with a tutoring system

Why are competency-gated tutoring systems so rare?

- Schools are time-gated, not competency-gated
- Difficulty enforcing deadlines
- Grading based on time-to-mastery may be pointless and harmful.

Recommendation for instructors

- Use competency-gated tutoring system
 - Flip: Videos/reading at home. Exercises in class.
 - Half group work (paper?) and half individual work (tutor)
 - Noisy study halls instead of lecture halls
 - Deadlines & exams for core. Badges for enrichment.
- Use a step-based tutoring system
 - Buy one if you can
 - If you build one, use example-tracing first
 - If you will use it repeatedly, plan on A/B testing

Recommendations for parents

- Human tutors ≈ step-based tutoring systems
- If you can do the task, then you can tutor the task
 - Do not lecture/demo!
 - Be step-based.

Thank you!

Bibliography

(all papers available from public.asu.edu/~kvanlehn)

The meta-analysis

 VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring systems. *Educational Psychologist*, 46(4), 197-221.

Why2 experiments

 VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C. P. (2007). When are tutorial dialogues more effective than reading? *Cognitive Science*, *31(1)*, *3-62*.

Andes, the physics tutor

- VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et al. (2005). The Andes physics tutoring system: Lessons learned. *International Journal of Artificial Intelligence and Education*, *15(3)*, 147-204.
- Andes-Cordillera study
 - in prep

Bibliography continued

Andes-Atlas studies

 Siler, S., Rose, C. P., Frost, T., VanLehn, K., & Koehler, P. (2002, June). Evaluating knowledge construction dialogues (KCDs) versus minilesson within Andes2 and alone. Paper presented at the Workshop on dialoguebased tutoring at ITS 2002, Biaritz, France.

Machine learning of Cordillera policies

- Chi, M., VanLehn, K., Litman, D., & Jordan, P. (2011). Empirically evaluating the application of reinforcement learning to the induction of effective and adaptive pedagogical strategies. User Modeling and User-Adapted Interaction, 21(1-2), 99-135.
- Teaching a meta-cognitive strategy (MEA)
 - Chi, M., & VanLehn, K. (2010). Meta-cognitive strategy instruction in intelligent tutoring systems: How, when and why. *Journal of Educational Technology and Society*, 13(1), 25-39.